已知集合M={x|-1<x-a<2},N={x|x2≥x},若M∪N=R,則實數(shù)a的取值范圍是( 。
A、(-1,1)
B、[-1,1)
C、[-1,1]
D、(-1,1]
考點:并集及其運算
專題:集合
分析:利用不等式性質(zhì)和并并集運算求解.
解答: 解:∵M={x|-1<x-a<2},N={x|x2≥x},
∴M={-1+a<x<2+a},N={x≤0或x≥1},
∵M∪N=R,∴-1+a≤0,或2+a≥1,
解得-1≤a≤1.
故選:C.
點評:本題考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意不等式性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A∪B={-2,0,1},則p=
 
,q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某數(shù)學(xué)愛好者設(shè)計了一個食品商標,如果在該商標所在平面內(nèi)建立如圖所示的平面直角坐標系xOy,則商標的邊緣輪廓線AOC恰是函數(shù)y=tan
πα
4
的圖象,邊緣輪廓線AEC恰是一段所對的圓心角為
π
2
的圓。粼趫D中正方形ABCD內(nèi)隨機選取一點P,則點P落在商標區(qū)域內(nèi)的概率等于( 。
A、
π-2
8
B、
1
4
C、
π-2
4
D、
π-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:sin315°的值為( 。
A、
2
2
B、-
2
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的底面邊長是2,側(cè)棱長是
6
,且它的五個頂點都在同一個球面上,則此球的半徑是( 。
A、1
B、2
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐的底面是邊長為2正三角形,側(cè)面均為等腰直角三角形,則此三棱錐的體積為( 。
A、
2
3
2
B、
2
C、
2
3
D、
4
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法求108和45的最大公約數(shù)為(  )
A、2B、9C、18D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校進行自主招生,先從報名者篩選出400人參加考試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機抽取24名筆試者的成績,如下表所示:
分數(shù)段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)
人數(shù) 2 3 4 5 9 1
據(jù)此估計參加面試的分數(shù)線大約是(  )
A、75B、80C、85D、90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,E、F分別為BC和PC的中點.
(1)求證:EF∥平面PBD;
(2)如果AB=PD,求EF與平面ABCD所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案