【題目】如圖,圓柱的軸截面是邊長為2的正方形,點P是圓弧上的一動點(不與重合),點Q是圓弧的中點,且點在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點P在平面上的射影為點O,點分別是和的重心,當(dāng)三棱錐體積最大時,回答下列問題.
(i)證明:平面;
(ii)求三棱錐的體積.
【答案】(1)證明見解析(2)(i)證明見解析(ii)
【解析】
(1)由,可得平面,即可證明;
(2)(i)連接并延長交于點M,連接并延長交于點N,連接,利用平行線分線段成比例可得,即可得得證;
(ii)根據(jù)即可求解.
(1)證明:因為是軸截面,
所以平面,所以,
又點P是圓弧上的一動點(不與重合),且為直徑,
所以,
又,平面,平面,
所以平面,平面,
故平面平面.
(2)當(dāng)三棱錐體積最大時,點P為圓弧的中點.所以點O為圓弧的中點,
所以四邊形為正方形,且平面.
(i)證明:連接并延長交于點M,連接并延長交于點N,連接,
則,
因為分別為三角形的重心,所以,
所以,
所以,
又平面,平面,
所以平面.
(ii)因為平面,
所以,
又,,
所以平面,
因為,
所以平面,即平面,即是三棱錐的高.
又,,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已雙曲線的一條漸近線與橢圓C:()在第一象限的交點為P,,為橢圓C的左、右焦點,若,則橢圓C的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:
①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);
②可以估計不足的大學(xué)生使用主要玩游戲;
③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.
其中正確的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由我國引領(lǐng)的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對增長產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動國民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測.結(jié)合下圖,下列說法正確的是( )
A.5G的發(fā)展帶動今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運營商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80分及以上的花苗為優(yōu)質(zhì)花苗.
(1)用樣本估計總體,以頻率作為概率,若在兩塊實驗地隨機抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場為了提高某品種水稻的產(chǎn)量,進(jìn)行良種優(yōu)選,在同一試驗田中分兩塊種植了甲乙兩種水稻.為了比較甲乙兩種水稻的產(chǎn)量,現(xiàn)從甲乙兩種水稻中各隨機選取20株成熟水稻.根據(jù)每株水稻顆粒的重量(單位:克)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種水稻的產(chǎn)量更高?并說明理由;
(2)求40株水稻顆粒重量的中位數(shù),并將重量超過和不超過的水稻株數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
甲種水稻 | ||
乙種水稻 |
(3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為兩種水稻的產(chǎn)量有差異?附:;
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)由方程到確定,對于函數(shù)給出下列命題:
①對任意,都有恒成立:
②,使得且同時成立;
③對于任意恒成立;
④對任意,,
都有恒成立.其中正確的命題共有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為了了解“微信支付”與“支付寶支付”的情況(“微信支付”與“支付寶支付”統(tǒng)稱為“移動支付”),對消費者在該超市在2019年1-6月的支付方式進(jìn)行統(tǒng)計,得到如圖所示的折線圖,則下列判斷正確的是( )
①這6個月中使用“微信支付”的總次數(shù)比使用“支付寶支付”的總次數(shù)多
②這6個月中使用“微信支付”的消費總額比使用“支付寶支付”的消費總額大
③這6個月中4月份平均每天使用“移動支付”的次數(shù)最多
④2月份平均每天使用“移動支付”比5月份平均每天使用“移動支付”的次數(shù)多
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com