如圖,橢圓的右焦點(diǎn)為F(c,0),過(guò)點(diǎn)F的一動(dòng)直線(xiàn)m繞點(diǎn)F轉(zhuǎn)動(dòng),
并且交橢圓于A,B兩點(diǎn),P為線(xiàn)段AB的中點(diǎn).
(1)求點(diǎn)P的軌跡H的方程;
(2)若在Q的方程中,令a2=1+cosθ+sinθ,
設(shè)軌跡H的最高點(diǎn)和最低點(diǎn)分別為M和N.當(dāng)θ為何值時(shí),△MNF為一個(gè)正三角形?

【答案】分析:(1)設(shè)出橢圓的方程,A,B的坐標(biāo)和P的坐標(biāo),把A,B坐標(biāo)代入橢圓的方程聯(lián)立,當(dāng)AB不垂直x軸時(shí)方程組相減整理求得的x和y的關(guān)系式,再看當(dāng)AB垂直于x軸時(shí),點(diǎn)P也滿(mǎn)足方程,綜合可得答案.
(2)把(1)中的軌跡方程整理成橢圓的標(biāo)準(zhǔn)方程,求得M,N,F(xiàn)的坐標(biāo),使△MNF為一個(gè)正三角形時(shí),則tan==,求得a和b的關(guān)系,進(jìn)而根據(jù)題設(shè)條件中的a和b的表達(dá)式,聯(lián)立求得θ.
解答:解:(1)設(shè)橢圓Q:(a>b>0)
上的點(diǎn)A(x1,y1)、B(x2,y2),又設(shè)P點(diǎn)坐標(biāo)為P(x,y),

1°當(dāng)AB不垂直x軸時(shí),x1?1;x2,
由(1)-(2)得
b2(x1-x2)2x+a2(y1-y2)2y=0

∴b2x2+a2y2-b2cx=0(3)
2°當(dāng)AB垂直于x軸時(shí),點(diǎn)P即為點(diǎn)F,滿(mǎn)足方程(3)
故所求點(diǎn)P的軌跡方程為:b2x2+a2y2-b2cx=0
(2)因?yàn)檐壽EH的方程可化為:
∴M(,),N(,-),F(xiàn)(c,0),
使△MNF為一個(gè)正三角形時(shí),
則tan==,即a2=3b2
由于a2=1+cosθ+sinθ,,
則1+cosq+sinq=3sinθ,
得θ=arctan
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.考查運(yùn)用解析幾何的方法分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷文)(12分)

如圖,橢圓的右焦點(diǎn)為,過(guò)點(diǎn)的一動(dòng)直線(xiàn)繞點(diǎn)轉(zhuǎn)動(dòng),并且交橢圓于兩點(diǎn),為線(xiàn)段的中點(diǎn).

(1)求點(diǎn)的軌跡的方程;

(2)若在的方程中,令,

設(shè)軌跡的最高點(diǎn)和最低點(diǎn)分別為.當(dāng)為何值時(shí),為一個(gè)正三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省“十二!备呷2次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,過(guò)的直線(xiàn)交橢圓于兩點(diǎn), 的周長(zhǎng)為8,且面積最大時(shí),為正三角形

1)求橢圓的方程;

2)設(shè)動(dòng)直線(xiàn)與橢圓有且只有一個(gè)公共點(diǎn),且與直線(xiàn)于點(diǎn),證明:點(diǎn)在以為直徑的圓上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省南京市東山外校高二下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分16分)

如圖,橢圓的右焦點(diǎn)為,右準(zhǔn)線(xiàn)為,

(1)求到點(diǎn)和直線(xiàn)的距離相等的點(diǎn)的軌跡方程。

(2)過(guò)點(diǎn)作直線(xiàn)交橢圓于點(diǎn),又直線(xiàn)于點(diǎn),若,

求線(xiàn)段的長(zhǎng);

(3)已知點(diǎn)的坐標(biāo)為,直線(xiàn)交直線(xiàn)于點(diǎn),且和橢圓的一個(gè)交點(diǎn)為點(diǎn),是否存在實(shí)數(shù),使得,若存在,求出實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓數(shù)學(xué)公式的右焦點(diǎn)為F,過(guò)焦點(diǎn)F作兩條互相垂直的弦AB、CD,設(shè)弦AB、CD的中點(diǎn)分別為M、N.
(Ⅰ)求證:直線(xiàn)MN恒過(guò)定點(diǎn)T,并求出T的坐標(biāo);
(Ⅱ)求以AB、CD為直徑的兩圓公共弦中點(diǎn)的軌跡方程,并判斷定點(diǎn)T與軌跡的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案