設(shè)為定義在上的奇函數(shù),當(dāng)時,(為常數(shù)),則 ( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省惠州市高三第三次調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:填空題
是平面內(nèi)不共線的三點,點P在該平面內(nèi)且有,現(xiàn)將一粒黃豆隨機撒在△內(nèi),則這粒黃豆落在△內(nèi)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市西城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
如圖,在中,以為直徑的半圓分別交,于點,,且,那么____;___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省協(xié)作體第二次適應(yīng)性測文科數(shù)學(xué)試卷(解析版) 題型:填空題
.已知雙曲線的左右焦點分別為,,為雙曲線右支上的任意一點,若的最小值為,則雙曲線離心率的取值范圍是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省協(xié)作體第二次適應(yīng)性測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在等腰三角形中,,在線段,(為常數(shù),且),為定長,則的面積最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年上海市普陀區(qū)高三上學(xué)期質(zhì)量調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分18分)本題共有3個小題,第(1)小題4分,第(2)小題6分,第(3)小題8分
已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.
(1)若R且,證明:函數(shù)必有局部對稱點;
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;
(3)若函數(shù)在R上有局部對稱點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年上海市普陀區(qū)高三上學(xué)期質(zhì)量調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:選擇題
“點在曲線上”是“點的坐標(biāo)滿足方程”的( )
A.充分非必要條件 B.必要非充分條件
C.充要條件 D.既非充分也非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年上海市普陀區(qū)高三上學(xué)期質(zhì)量調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的前項和為,且,N*
(1)求數(shù)列的通項公式;
(2)已知(N*),記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由.
(3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省廣州市高三1月模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
某位同學(xué)進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫(°C)與該奶茶店的這種飲料銷量(杯),得到如下數(shù)據(jù):
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫(°C) | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(參考公式:.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com