13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,-4≤x≤0}\\{-{2}^{x},0<x≤a}\end{array}\right.$的值域是[-8,1],則實數(shù)a的取值范圍是(0,3].

分析 由二次函數(shù)的性質(zhì)可得當(dāng)4≤x≤0時,函數(shù)的值域剛好為[-8,1],故只需y=-2x,a≤x<0的值域應(yīng)為[-8,1]的子集,可得a的不等式,結(jié)合指數(shù)函數(shù)的單調(diào)性可得.

解答 解:當(dāng)-4≤x≤0時,f(x)=-x2-2x=-(x+1)2+1,
圖象為開口向下的拋物線,對稱軸為x=-1,
故函數(shù)在[-4,-1]單調(diào)遞增,[-1,0]單調(diào)遞減,
當(dāng)x=-1時,函數(shù)取最大值1,當(dāng)x=-4時,函數(shù)取最小值-8,
又函數(shù)f(x)的值域為[-8,1],
∴y=-2x,a≤x<0的值域應(yīng)為[-8,1]的子集,
又y=-2x單調(diào)遞減,∴y∈[-2a,-1),
故只需-2a≥-8即可,解得0<a≤3
故答案為:(0,3].

點評 本題考查函數(shù)的值域,涉及分段函數(shù)和指數(shù)函數(shù),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列判斷正確的是②④.(把正確的序號都填上)
①集合A={(x,y)|x+y=5},B={(x,y)|x-y=-1},則A∩B={2,3};
②設(shè)f(x)定義在R上的函數(shù),且對任意m,n有f(m+n)=f(m)•f(n),且當(dāng)x>0時,0<f(x)<1,則f(0)=1,且當(dāng)x<0時,有f(x)>1;
③已知函數(shù)f(x)=$\frac{{\root{3}{3x-1}}}{{a{x^2}+ax-3}}$的定義域是R,則實數(shù)a的取值范圍是-12<a<0;
④函數(shù)y=-log2x滿足對定義域內(nèi)任意的x1,x2,都有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命題:
①當(dāng)k=-$\frac{1}{2}$時,函數(shù)f(x)在(0,$\frac{1}{2}}$)上單調(diào)遞增;
②當(dāng)k≥0時,函數(shù)f(x)在(0,+∞)上有極大值;
③當(dāng)-$\frac{1}{2}$<k<0時,函數(shù)f(x)在($\frac{1}{2}$,+∞)上單調(diào)遞減;
④當(dāng)k<-$\frac{1}{2}$時,函數(shù)f(x)在(0,+∞)上有極大值f(${\frac{1}{2}}$),有極小值f(-k).
其中正確命題的序號是( 。
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計算:$\underset{lim}{x→∞}(\frac{x}{1+x})^{x}$=$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)a=20.3,b=0.32,c=log${\;}_{\sqrt{2}}$2,將a,b,c按從小到大的順序用不等號連接為b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一點P到焦點F1的距離為2,M是線段PF1的中點,O為原點,則|OM|等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)的定義域為R,下列說法中請把正確的序號為(1)(3)
(1)若f(x)是偶函數(shù),則f(-2)=f(2)
(2)若f(-2)=f(2),則f(x)是偶函數(shù)
(3)f(-2)≠f(2),則f(x)不是偶函數(shù)
(4)若f(-2)=f(2),則f(x)不是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時是單調(diào)函數(shù),則滿足f(x)=f($\frac{x+1}{2x+4}$)的所有x之和為(  )
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)化簡9${\;}^{\frac{3}{2}}$×64${\;}^{\frac{1}{6}}$÷30
(2)化簡($\frac{1}{9}$)${\;}^{\frac{1}{2}}$×36${\;}^{-\frac{1}{2}}$÷3-3
(2)化簡 $\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)

查看答案和解析>>

同步練習(xí)冊答案