已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)以及雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的漸近線將第一象限三等分,則雙曲線
x2
a2
-
y2
b2
=1的離心率為( 。
A、2或
3
B、
6
2
3
3
C、
3
6
D、2或
2
3
3
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線的漸近線的方程可得
b
a
=
3
3
3
,再利用c2=a2+b2,將所得等式轉(zhuǎn)化為關(guān)于離心率的方程即可解得離心率.
解答: 解:由題意,
b
a
=
3
3
3

∴e=
1+(
b
a
)2
=2或
2
3
3

故選:D.
點(diǎn)評:本題考查了雙曲線的幾何性質(zhì),雙曲線的漸近線方程的意義以及雙曲線離心率的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在三棱錐S-ABC中,△SBC、△ABC都是等邊三角形,平面SBC⊥平面ABC,SA=6,則三棱錐體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2+2x-1的圖象在點(diǎn)(0,-1)處的切線斜率是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在計(jì)算數(shù)列{2-n}前100項(xiàng)和的程序框圖中,框內(nèi)空白處應(yīng)填入的計(jì)算語句是( 。
A、S←2-1+2-2+…+2-n
B、S←S+2-n
C、S←2-1+2-2+…+2-100
D、S←S+2-n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項(xiàng)公式an=(-1)n(2n+1),其前n項(xiàng)和為Sn,則S10=(  )
A、10B、-10
C、12D、-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2•cos(xπ),若an=f(n)+f(n+1),則
2014
i=1
ai=( 。
A、-2015B、-2014
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,表示同一函數(shù)的是(  )
A、y=
3x3
與y=
x2
B、y=
x2-1
x+1
與y=x-1
C、y=lnex與y=elnx
D、y=x0與y=
1
x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),則x=x0為函數(shù)y=f(x)的極值點(diǎn)是f′(x0)=0的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于問題:“兩兩相交且任三條不共點(diǎn)的n條直線把平面分為f(n)部分”,我們由歸納推理得到f(10)=( 。
A、54B、55C、56D、57

查看答案和解析>>

同步練習(xí)冊答案