【題目】拋物線Cy22pxp0)的焦點是F,直線y2與拋物線C的交點到F的距離等于2

1)求拋物線C的方程;

2)過點(2,0)斜率為k的直線l交拋物線CA、B兩點,O為坐標原點,直線AO與直線x=﹣2相交于點P,求證:BPx軸.

【答案】1y24x;(2)見解析

【解析】

1)求出直線y2與拋物線C的交點的橫坐標,應用焦半徑公式,即可求解;

(2)設出直線l的方程,與拋物線方程聯(lián)立,建立AB縱坐標關系,再利用三點共線,求出縱坐標關系,即可證明結論.

1)由題意得直線與拋物線的交點坐標:(2),

所以2 p0解得:p2,

所以拋物線C的方程:y24x;

2)由題意得:直線l的斜率不為零,

設直線l的方程:xmy+2,

代入拋物線方程得:y24my80

Ax0,y0),Bx'y'),y0y'=﹣8y',

所以Bx',),直線OA的方程:yxx,

x=﹣2的交點P(﹣2),

BPx軸.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

1)若的極值點,求實數(shù)的值;

2)若上是單調增函數(shù),求實數(shù)的取值范圍;

3)當時,方程有實根,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論的單調性;

2的導函數(shù),若存在兩個極值點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左右頂點,點為橢圓上一點,點關于軸的對稱點為,且.

1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;

2)在(1)的條件下,若過點的直線與橢圓相交于不同的兩點,設為橢圓上一點,且滿足為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解一種植物果實的情況,隨機抽取一批該植物果實樣本測量重量(單位:克),按照,,,分為5組,其頻率分布直方圖如圖所示.

(1)求圖中的值;

(2)估計這種植物果實重量的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)已知這種植物果實重量不低于32.5克的即為優(yōu)質果實,用樣本估計總體.若從這種植物果實中隨機抽取3個,其中優(yōu)質果實的個數(shù)為,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調遞增,求實數(shù)的取值范圍;

2)若直線是函數(shù)圖象的切線,求的最小值;

3)當時,若直線是函數(shù)圖象有兩個交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生物探測器在水中逆流行進時,所消耗的能量為EcvnT,其中v為行進時相對于水的速度,T為行進時的時間(單位:h),c為常數(shù),n為能量次級數(shù),如果水的速度為4km/h,該生物探測器在水中逆流行進200km

1)求T關于v的函數(shù)關系式;

2)①當能量次級數(shù)為2時,求探測器消耗的最少能量;

②當能量次級數(shù)為3時,試確定v的大小,使該探測器消耗的能量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角AB、C所對的邊長分別為a、b、c,且acosB+bcosA2ccosB

1)若a3,,求c的值;

2)若,求fA)的取值范圍.

查看答案和解析>>

同步練習冊答案