【題目】在三棱錐P﹣ABC中,D為AB的中點(diǎn).
(1)與BC平行的平面PDE交AC于點(diǎn)E,判斷點(diǎn)E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
【答案】(1)為中點(diǎn)(2)詳見解析
【解析】試題分析:(1)根據(jù)線面平行的性質(zhì)進(jìn)行判斷即可:
(2)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明.
(1)解:E為AC中點(diǎn).理由如下:
平面PDE交AC于E,
即平面PDE∩平面ABC=DE,
而BC∥平面PDF,BC平面ABC,
所以BC∥DE,
在△ABC中,因?yàn)?/span>D為AB的中點(diǎn),所以E為AC中點(diǎn);
(2)證:因?yàn)?/span>PA=PB,D為AB的中點(diǎn),
所以AB⊥PD,
因?yàn)槠矫?/span>PCD⊥平面ABC,平面PCD∩平面ABC=CD,
在銳角△PCD所在平面內(nèi)作PO⊥CD于O,
則PO⊥平面ABC,
因?yàn)?/span>AB平面ABC,
所以PO⊥AB
又PO∩PD=P,PO,PD平面PCD,
則AB⊥平面PCD,
又PC平面PCD,
所以AB⊥PC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率為 且過點(diǎn)( ,0),過定點(diǎn)C(﹣1,0)的動直線與該橢圓相交于A、B兩點(diǎn).
(1)若線段AB中點(diǎn)的橫坐標(biāo)是﹣ ,求直線AB的方程;
(2)在x軸上是否存在點(diǎn)M,使 為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+2ax﹣b2+4
(1)若a是從0,1,2三個數(shù)中任取的一個數(shù),b是從﹣2,﹣1,0,1,2五個數(shù)中任取的一個數(shù),求函數(shù)f(x)有零點(diǎn)的概率;
(2)若a是從區(qū)間[﹣3,3]上任取的一個數(shù),b是從區(qū)間[0,3]上任取的一個數(shù),求函數(shù)g(x)=f(x)+5無零點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F(xiàn)分別在A1B1 , D1C1上,A1E=D1F=4,過點(diǎn)E,F(xiàn)的平面α與此長方體的面相交,交線圍成一個正方形.
(I)在圖中畫出這個正方形(不必說明畫法和理由);
(II)求直線AF與平面α所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)+1(0≤φ≤ )的圖象相鄰兩對稱軸之間的距離為π,且在x= 時取得最大值2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)f(α)= ,且 <α< ,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}中, ,且對任意正整數(shù)都成立,數(shù)列{}的前n項(xiàng)和為Sn。
(1)若,且,求a;
(2)是否存在實(shí)數(shù)k,使數(shù)列{}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請說明理由;
(3)若。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)一點(diǎn)O滿足 = ,若△ABC內(nèi)任意投一個點(diǎn),則該點(diǎn)△OAC內(nèi)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com