某市規(guī)定,高中學生三年在校期間參加不少于80小時的社區(qū)服務才合格.教育部門在全市隨機抽取200學生參加社區(qū)服務的數(shù)據(jù),按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.

(Ⅰ)求抽取的200位學生中,參加社區(qū)服務時間不少于90小時的學生人數(shù),并估計從全市高中學生中任意選取一人,其參加社區(qū)服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數(shù)很多)中任意選取3位學生,記ξ為3位學生中參加社區(qū)服務時間不少于90小時的人數(shù).試求隨機變量ξ的分布列和數(shù)學期望Eξ.
考點:離散型隨機變量的期望與方差,頻率分布直方圖
專題:應用題,概率與統(tǒng)計
分析:(Ⅰ)利用頻率分布直方圖,求出頻率,即可求得結論;
(Ⅱ)ξ=0,1,2,3,求出隨機變量取每一個值的概率值,即可求隨機變量ξ的分布列及數(shù)學期望.
解答: 解:(Ⅰ)抽取的200位學生中,參加社區(qū)服務時間不少于90小時的學生人數(shù)為(0.06+0.02)×5×200=80人
參加社區(qū)服務時間不少于90小時的概率
80
200
=0.4;
(Ⅱ)ξ=0,1,2,3,則
P(ξ=0)=0.63=0.216,P(ξ=1)=
C
1
3
•0.4•0.62
=0.432,P(ξ=2)=
C
2
3
•0.42•0.6
=0.288,P(ξ=3)=0.43=0.064
∴ξ的分布列為
ξ 0 1 2 3
P 0.216 0.432 0.288 0.064
數(shù)學期望Eξ=1×0.432+2×0.288+3×0.064=1.2.
點評:求隨機變量的分布列與期望的關鍵是確定變量的取值,求出隨機變量取每一個值的概率值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,D為BC邊上一點,BD=
1
2
DC,∠ADB=120°,AD=2,若△ADC的面積為
3
,則AB=( 。
A、1
B、
5
C、
7
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{
1
an
}是公差為2的等差數(shù)列,且a1=1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{anan+1}的前n項和為Tn.證明:
1
3
≤Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某品牌電視專賣店,在五一期間設計一項有獎促銷活動:每購買一臺電視,即可通過電腦產(chǎn)生一組3個數(shù)的隨機數(shù)組,根據(jù)下表兌獎.
獎次 一等獎 二等獎 三等獎
隨機數(shù)組的特征 3個1或3個0 只有2個1或2個0 只有1個1或1個0
獎金(單位:元) 5m 2m m
商家為了了解計劃的可行性,估計獎金數(shù),進行了隨機模擬試驗,產(chǎn)生20組隨機數(shù)組,每組3個數(shù),試驗結果如下所示:
235,145,124,754,353,296,065,379,118,247,
520,356,218,954,245,368,035,111,357,265.
(1)在以上模擬的20組數(shù)中,隨機抽取3組數(shù),至少有1組獲獎的概率;
(2)根據(jù)上述模擬試驗的結果,將頻率視為概率.
(i)若活動期間某單位購買四臺電視,求恰好有兩臺獲獎的概率;
(ii)若本次活動平均每臺電視的獎金不超過260元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M為拋物線C:x2=4py(p>0)準線上的任意一點,過點M作曲線C的兩條切線,設切點為A、B.
(Ⅰ)直線AB是否過定點?如果是,求出該定點,如果不是,請說明理由;
(Ⅱ)當直線MA,MF,MB的斜率均存在時,求證:直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設P是圓x2+y2=2上的動點,點D是P在x軸上的投影,M為PD上一點,且|PD|=
2
|MD|,當P在圓上運動時,記點M的軌跡為曲線C.
(Ⅰ)求證:曲線C是焦點在x軸上的橢圓,并求其方程;
(Ⅱ)設橢圓C的右焦點為F2,直線l:y=kx+m與橢圓C交于A、B兩點,直線F2A與F2B的傾斜角互補,求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某校校門的一個局部的截面設計圖,CA=AO=OB=2米,
EF
是以O為圓心、OA為半徑的圓的一段。‥、F兩點分別在OC、OD上),∠AOC=∠BOD=θ(θ≤
π
4
),OD=k•OC(k是常數(shù)且1<k≤3).通過對材料性能進行測算,“跨度比”
CD
OC
不能超過
3k+1
. 
(1)將該截面(圖中實線圍成的區(qū)域)的面積S表示為θ的函數(shù);
(2)為使該門口顯得相對大氣,截面積S越大越好. 當S最大時,試求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設拋物線C:y2=2px(p>0)的焦點為F,準線為l,過準線l上一點M(-1,0)且斜率為k的直線l1交拋物線C于A,B兩點,線段AB的中點為P,直線PF交拋物線C于D,E兩點.
(Ⅰ)求拋物線C的方程及k的取值范圍;
(Ⅱ)是否存在k值,使點P是線段DE的中點?若存在,求出k值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x)=ax2-lnx存在垂直于y軸的切線,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案