如圖,在海岸線l一側(cè)C處有一個(gè)美麗的小島,某旅游公司為方便游客,在l上設(shè)立了A,B兩個(gè)報(bào)名點(diǎn),滿足A,B,C中任意兩點(diǎn)間的距離為10千米.公司擬按以下思路運(yùn)作:先將A,B兩處游客分別乘車集中到AB之間的中轉(zhuǎn)點(diǎn)D處(點(diǎn)D異于A,B兩點(diǎn)),然后乘同一艘游輪前往C島.據(jù)統(tǒng)計(jì),每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費(fèi)4元,游輪每千米耗費(fèi)24元.設(shè)∠CDA=α,每批游客從各自報(bào)名點(diǎn)到C島所需運(yùn)輸成本S元.
(1)寫出S關(guān)于α的函數(shù)表達(dá)式,并指出α的取值范圍;
(2)問中轉(zhuǎn)點(diǎn)D距離A處多遠(yuǎn)時(shí),S最?
考點(diǎn):在實(shí)際問題中建立三角函數(shù)模型
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由題在△ACD中,由余弦定理求得CD、AD的值,即可求得運(yùn)輸成本S的解析式.
(2)利用導(dǎo)數(shù)求得cosα=
1
3
時(shí),函數(shù)S取得極小值,由此可得中轉(zhuǎn)點(diǎn)D到A的距離以及S的最小值.
解答: 解:(1)由題在△ACD中,∵∠CAD=∠ABC=∠ACB=
π
3
,∠CDA=α,∴∠ACD=
3
-α.
又AB=BC=CA=10,△ACD中,
由正弦定理知
CD
sin
π
3
=
AD
sin(
3
-α)
=
10
sinα
,得CD=
5
3
sinα
,AD=
10sin(
3
-α)
sinα
…(3分)
∴S=8AD+16BD+24CD=
120
3
-80sin(
3
-α)
sinα
+160
=40
3
3-cosα
sinα
+120(
π
3
<α<
3
).…(7分)
(2)S′=40
3
×
1-3cosα
sin2α
,令S′=0,得cosα=
1
3
.…(10分)
當(dāng)cosα>
1
3
時(shí),S′<0;當(dāng)cosα<
1
3
時(shí),S′>0,∴當(dāng)cosα=
1
3
時(shí)S取得最小值.…(12分)
此時(shí),sinα=
2
2
3
,AD=
5
3
cosα+5sinα
sinα
=5+
5
6
4
,
∴中轉(zhuǎn)站距A處5+
5
6
4
千米時(shí),運(yùn)輸成本S最。14分)
點(diǎn)評(píng):本題主要考查正弦定理,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求極值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
2
5
,且對(duì)任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(Ⅰ)求證:數(shù)列{
1
an
}為等差數(shù)列;
(Ⅱ)令bn=
2
3
1
an
+5),求數(shù)列{
bn
3n
}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+|x-1|.
(1)當(dāng)a=3時(shí),求不等式f(x)≥2的解集;
(2)若?x∈R,f(x)≥|x-1|-x+5,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,4,6,8,12},集合A={8,x,y,z},集合B={1,xy,yz,2x},且z≠6、12,若A=B,A?U,B?U,求A的補(bǔ)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]上的增函數(shù),y=f(x),f(0)≠0,f(a+b)=f(a)f(b)
(1)求f(0)
(2)求證:對(duì)任意的x∈[-1,1],恒有f(x)≥0;
(3)若f(x)•f(2x-x2)>1,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的函數(shù)f(x)=f(x+2k)(k∈Z)及f(-x)=-f(x),且當(dāng)x∈(0,1)時(shí),f(x)=
2x
4x+1

(1)求f(x)在[2k-1,2k+1](k∈Z)上的解析式;
(2)求證:f(x)在x∈(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個(gè)數(shù)x.求:
(Ⅰ)輸出的x(x<6)的概率;
(Ⅱ)輸出的x(6<x≤8)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(-1,
3
2
)是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),
PA
+
PB
PO
(0<λ<4,λ≠2).求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(a-b)2
(a<b)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案