是否存在平移向量
a
,使得由y=
2
sinx的圖象平移
a
可得到y(tǒng)=sinx+cosx的圖象?若存在,求出
a
;若不存在,說明理由.
考點:平面向量坐標表示的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:平面向量及應(yīng)用
分析:方法一,先將函數(shù)利用輔助角公式化簡,即可得到平移向量;
方法二,先寫出平移向量,再得到平移后的函數(shù)解析式,比較,即可得到結(jié)論.
解答: 解:法一、y=sinx+cosx=
2
sin(x+
π
4
).
∴存在
a
,且
a
=(-
π
4
+2mπ,0),m∈Z.
法二、設(shè)平移向量為
a
=(h,k),則y=
2
sin x平移后得y=
2
sin(x-h)+k,即為y=
2
sin(x+
π
4
),
∴k=0,x+
π
4
+2m′π=x-h,m′∈Z,
∴h=-2m′π-
π
4
(m′∈Z).
∴存在
a
,且
a
=(-
π
4
-2m′π,0),m′∈Z.
點評:本題考查向量的平移,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求O點到面ABC的距離;
(2)求二面角E-AB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均是正數(shù),其前n項和為Sn,且滿足(p-1)Sn=p2-an
其中P為正常數(shù),且P≠1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
2-logpan
(n∈N*),求數(shù)列{bnbn+1}的前n項和Tn
(3)判斷是否存在正整數(shù)M,使得n>M時,a1a4a7…a3n-2>a78恒成立?若存在,求出相應(yīng)的M的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=mx2-2x+1有且僅有一個正實數(shù)的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,{an}的前n項和為Sn,a1+a3=
3
2
,S5=5.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足anbn=
1
4
,Tn=b1b2+b2b3+b3b4+…+bnbn+1,若不等式2kTn<bn恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組 
x≥1
y≤2
x-y≤0
所表示的平面區(qū)域的面積為( 。
A、2
B、
2
3
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1>0,x1≠1且xn+1=
xn•(
x
2
n
+3)
3
x
2
n
+1
(n=1,2,…),試證:“數(shù)列{xn}對任意的正整數(shù)n,都滿足xn>xn+1,”當此題用反證法否定結(jié)論時應(yīng)為(  )
A、對任意的正整數(shù)n,有xn=xn+1
B、存在正整數(shù)n,使xn≤xn+1
C、存在正整數(shù)n,使xn≥xn-1,且xn≥xn+1
D、存在正整數(shù)n,使(xn-xn-1)(xn-xn+1)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個口袋中裝有12個大小相同的黑球、白球和紅球.已知從袋中任意摸出2個球,至少得到一個黑球的概率是
5
11
.求:
(1)袋中黑球的個數(shù);
(2)從袋中任意摸出3個球,至少得到2個黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=ax2上一點M(m,3)到焦點距離為5,則a=
 

查看答案和解析>>

同步練習(xí)冊答案