分析 可由題意求得數(shù)列的前15項,觀察得到,連續(xù)5項,a4n+1,a4n+2,a4n+3,a4n+4,a4n+5中,a4n+3最大,令a4k+3=bk,由數(shù)列的恒等式和等比數(shù)列的求和公式,求出bn的通項,即可得到bn的范圍,進而得到M的最小值.
解答 解:由題意可得數(shù)列{an}中的前幾項:
1,3,5,$\frac{5}{2}$,$\frac{5}{4}$,$\frac{13}{4}$,$\frac{21}{4}$,$\frac{21}{8}$,$\frac{21}{16}$,$\frac{53}{16}$,$\frac{85}{16}$,$\frac{85}{32}$,$\frac{85}{64}$,$\frac{213}{64}$,$\frac{341}{64}$,…,
觀察得到,連續(xù)5項,a4n+1,a4n+2,a4n+3,a4n+4,a4n+5中,a4n+3最大,
令a4k+3=bk,b0=5,b1=$\frac{21}{4}$,b2=$\frac{85}{16}$,b3=$\frac{341}{64}$,…,
若bk=$\frac{{x}_{k}}{{4}^{k}}$,則bk+1=$\frac{4{x}_{k}+1}{{4}^{k+1}}$=$\frac{{x}_{k}}{{4}^{k}}$+$\frac{1}{{4}^{k+1}}$=bk+$\frac{1}{{4}^{k+1}}$,
即有bk+1-bk=$\frac{1}{{4}^{k+1}}$,
則有bn=b0+(b1-b0)+…+(bn-bn-1)
=5+$\frac{1}{4}$+$\frac{1}{16}$+…$\frac{1}{{4}^{n}}$=5+$\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=$\frac{16}{3}$-$\frac{1}{3•{4}^{n}}$,
即a4n+3=$\frac{16}{3}$-$\frac{1}{3•{4}^{n}}$是遞增數(shù)列,
且a4n+3<$\frac{16}{3}$,
由于對每個n,a4n+1,a4n+2,a4n+3,a4n+4,a4n+5中,a4n+3最大,
則對n∈N,都有an<$\frac{16}{3}$.
由an<M恒成立,
則有M≥$\frac{16}{3}$.即M的最小值為$\frac{16}{3}$.
故答案為:$\frac{16}{3}$.
點評 本題為2012年江西預賽試題的改編題,考查數(shù)列的通項及單調(diào)性和最值問題,同時考查等比數(shù)列的求和公式,以及化簡運算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,$\frac{7}{5}$] | B. | [0,$\frac{7}{4}$] | C. | [-2,$\frac{7}{3}$] | D. | [-2,$\frac{7}{5}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com