19.拋物線y2=-4x的通徑長等于4.

分析 求得焦點(diǎn)坐標(biāo),代入拋物線方程,求得y的值,則拋物線的通徑為2丨y丨=4.

解答 解:由拋物線y2=-4x焦點(diǎn)坐標(biāo)為(-1,0),當(dāng)x=-1時(shí),y=±2,
則拋物線的通徑為2丨y丨=4,
故答案為:4.

點(diǎn)評 本題考查拋物線的簡單幾何性質(zhì),考查拋物線的通徑,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示,則該幾何體的表面積為3π+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算:$\lim_{n→∞}\frac{{1+\frac{1}{3}+\frac{1}{9}+…+\frac{1}{3^n}}}{{1+\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2^n}}}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知${log_4}(3a+4b)={log_2}\sqrt{2ab}$,則a+b的最小值為$\frac{7+4\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為$\frac{{3\sqrt{7}}}{7}$,則雙曲線的離心率為( 。
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=asinx-bcosx(a,b為常數(shù),a≠0,x∈R)在x=$\frac{π}{4}$處取得最大值,則函數(shù)y=f(x+$\frac{π}{4}$)是( 。
A.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)($\frac{3π}{2}$,0)對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)($\frac{3π}{2}$,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.兩條平行直線l1:x+2y+5=0和l2:4x+8y+15=0的距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,已知AE與平面ABC所成的角為θ,且$tanθ=\frac{{\sqrt{3}}}{2}$;
(1)求證:平面ACD⊥平面ADE
(2)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達(dá)式及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在三角形中,“三條邊長為3,4,5”是“三條邊長為連續(xù)整數(shù)的直角三角形”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案