定義在(0,+∞)上的函數(shù)f(x)滿足:f(2x)=2f(x),且當x∈(1,2]時,f(x)=2-x,若x1,x2是方程f(x)=a(0<a≤1)的兩個實數(shù)根,則x1-x2不可能是


  1. A.
    24
  2. B.
    72
  3. C.
    96
  4. D.
    120
B
分析:根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=-x+2b,x∈(b,2b],又將方程f(x)=a(0<a≤1)的兩個實數(shù)根,轉化為函數(shù)y=f(x)圖象和直線y=a的交點問題,再結合函數(shù)的圖象根據(jù)題意求出答案即可.
解答:因為對任意的x∈(0,+∞)恒有f(2x)=2f(x)成立,且當x∈(1,2]時,f(x)=2-x
所以f(x)=-x+2b,x∈(b,2b],b∈N*
由題意方程f(x)=a(0<a≤1)的兩個實數(shù)根,得函數(shù)y=f(x)圖象和直線y=a的有兩個交點,
分別畫出它們的圖象,如圖所示,
所以可得函數(shù)y=f(x)圖象和直線y=a的交點的橫坐標之差可以是2,4,8,16,32,64,…
由于24=8+16;96=32+64;120=8+16+32+64.
則x1-x2不可能是72.
故選B.
點評:解決此類問題的關鍵是熟悉求函數(shù)解析式的方法以及函數(shù)的圖象與函數(shù)的性質(zhì),數(shù)形結合思想是高中數(shù)學的一個重要數(shù)學數(shù)學,是解決數(shù)學問題的必備的解題工具.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在(0,1)上的函數(shù)f(x),對任意的m,n∈(1,+∞)且m<n時,都有f(
1
n
)-
f(
1
m
)=f(
m-n
1-mn
)
an=f(
1
n2+5n+5
)
,n∈N*,則在數(shù)列{an}中,a1+a2+…a8=( 。
A、f(
1
2
)
B、f(
1
3
)
C、f(
1
4
)
D、f(
1
5
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在(0,1)上的函數(shù),且滿足:①對任意x∈(0,1),恒有f(x)>0;②對任意x1,x2∈(0,1),恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2
,則下面關于函數(shù)f(x)判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•順義區(qū)二模)已知定義在區(qū)間[0,
2
]上的函數(shù)y=f(x)的圖象關于直線x=
4
對稱,當x
4
時,f(x)=cosx,如果關于x的方程f(x)=a有解,記所有解的和為S,則S不可能為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

填空題
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,則sin2x的值為
1
9
1
9

(2)已知定義在區(qū)間[0,
2
]
上的函數(shù)y=f(x)的圖象關于直線x=
4
對稱,當x≥
4
時,f(x)=cosx,如果關于x的方程f(x)=a有四個不同的解,則實數(shù)a的取值范圍為
(-1,-
2
2
)
(-1,-
2
2
)


(3)設向量
a
b
,
c
滿足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
,
a
b
,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湖州二模)定義在(0,
π
2
)上的函數(shù)f(x),f′(x)是它的導函數(shù),且恒有f(x)<f′(x)tanx成立,則( 。

查看答案和解析>>

同步練習冊答案