在1+(1+x)+(1+x)2+(1+x)3+(1+x)4+(1+x)5的展開式中,含x2項的系數(shù)是( )
A.10
B.15
C.20
D.25
【答案】分析:利用二項式定理展開二項式,找出含有x2的項,即可求得x2項的系數(shù).
解答:解:在1+(1+x)+(1+x)2+(1+x)3+(1+x)4+(1+x)5的展開式中,
含x2項為:+++==20,
故選C.
點評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),組合數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出所有t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(0,2)
(0,2)
上遞減;并利用單調(diào)性定義證明.函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當x=
2
2
時,y最小=
4
4

(2)函數(shù)f(x)=x+
4
x
(x<0)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當x∈[-1,0)時,f(x)=x3-ax(a∈R).
(1)當x∈(0,1]時,求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當x∈(0,1]時,f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省保定市蠡縣中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當x∈[-1,0)時,f(x)=x3-ax(a∈R).
(1)當x∈(0,1]時,求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當x∈(0,1]時,f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省連云港市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出所有t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

同步練習(xí)冊答案