【題目】已知拋物線C:y2=4x 的焦點為F.
(1)點A,P滿足 .當(dāng)點A在拋物線C上運動時,求動點P的軌跡方程;
(2)在x軸上是否存在點Q,使得點Q關(guān)于直線y=2x的對稱點在拋物線C上?如果存在,求所有滿足條件的點Q的坐標(biāo);如果不存在,請說明理由.
【答案】
(1)解:設(shè)動點P的坐標(biāo)為(x,y),點A的坐標(biāo)為(xA,yA),則 ,
因為F的坐標(biāo)為(1,0),所以 ,
由 ,得(x﹣xA,y﹣yA)=﹣2(xA﹣1,yA).
即 ,解得
代入y2=4x,得到動點P的軌跡方程為y2=8﹣4x.
(2)解:設(shè)點Q的坐標(biāo)為(t,0).點Q關(guān)于直線y=2x的對稱點為Q′(x,y),
則 ,解得 .
若Q′在C上,將Q′的坐標(biāo)代入y2=4x,得4t2+15t=0,即t=0或 .
所以存在滿足題意的點Q,其坐標(biāo)為(0,0)和( ).
【解析】(1)設(shè)出動點P和A的坐標(biāo),求出拋物線焦點F的坐標(biāo),由 得出P點和A點的關(guān)系,由代入法求動點P的軌跡方程;(2)設(shè)出點Q的坐標(biāo),在設(shè)出其關(guān)于直線y=2x的對稱點Q′的坐標(biāo),由斜率關(guān)系及中點在y=2x上得到兩對稱點坐標(biāo)之間的關(guān)系,再由點Q′在拋物線上,把其坐標(biāo)代入拋物線方程即可求得Q點的坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,3,5,7,9這五個數(shù)中,每次取出兩個不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個數(shù)是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點在坐標(biāo)原點,焦點F在軸正半軸上,過點F的直線交拋物線于A,B兩點,線段AB的長是8,AB的中點到軸的距離是.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)在拋物線上是否存在不與原點重合的點P,使得過點P的直線交拋物線于另一點Q,滿足,且直線PQ與拋物線在點P處的切線垂直?并請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1﹣ )元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號.
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>20+18+4=42.
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
| 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
②在地理成績及格的學(xué)生中,已知求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形區(qū)域ABCD的A,C兩點處各有一個通信基站,假設(shè)其信號覆蓋范圍分別是扇形區(qū)域ADE和扇形區(qū)域CBF(該矩形區(qū)域內(nèi)無其他信號來源,基站工作正常).若在該矩形區(qū)域內(nèi)隨機(jī)地選一地點,則該地點無信號的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了安排生產(chǎn)任務(wù),需要確定加工零件所花費的時間,為此作了四次試 驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(件) | ||||
加工的時間y(小時) |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測生產(chǎn)10個零件需要多少時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(1)求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);
(2)求分?jǐn)?shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,直線:.設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓心上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com