拋物線(xiàn)y=2x2的焦點(diǎn)坐標(biāo)是   
【答案】分析:先將方程化成標(biāo)準(zhǔn)形式,即,求出 p=,即可得到焦點(diǎn)坐標(biāo).
解答:解:拋物線(xiàn)y=2x2的方程即  x2=y,∴p=,故焦點(diǎn)坐標(biāo)為 (0,),
故答案為:(0,).
點(diǎn)評(píng):本題考查拋物線(xiàn)的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,把拋物線(xiàn)y=2x2的方程化為標(biāo)準(zhǔn)形式,是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線(xiàn)l過(guò)拋物線(xiàn)y=2x2的焦點(diǎn),且與這條拋物線(xiàn)交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)作它的一條漸近線(xiàn)的垂線(xiàn),垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線(xiàn).
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y=2x2的焦點(diǎn)坐標(biāo)為( 。
A、(1,0)
B、(
1
4
,0)
C、(0,
1
4
D、(0,
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y=2x2的焦點(diǎn)坐標(biāo)是(  )
A、(
1
8
,0)
B、(0,
1
8
C、(0,
1
2
D、(
1
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y=-2x2的焦點(diǎn)坐標(biāo)是( 。
A、(-
1
2
,0)
B、(-1,0)
C、(0,-
1
4
)
D、(0,-
1
8
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1兩焦點(diǎn)F1,F(xiàn)2,則橢圓上存在六個(gè)不同點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線(xiàn)l過(guò)拋物線(xiàn)y=2x2的焦點(diǎn),且與這條拋物線(xiàn)交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)作它的一條漸近線(xiàn)的垂線(xiàn),垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④根據(jù)氣象記錄,知道荊門(mén)和襄陽(yáng)兩地一年中雨天所占的概率分別為20%和18%,兩地同時(shí)下雨的概率為12%,則荊門(mén)為雨天時(shí),襄陽(yáng)也為雨天的概率是60%.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案