一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體為直三棱柱,根據(jù)三視圖判斷側(cè)棱長(zhǎng)和底面三角形的形狀及相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱柱的體積公式計(jì)算.
解答: 解:由三視圖知:幾何體為直三棱柱,
其中側(cè)棱長(zhǎng)為8,底面三角形的底邊長(zhǎng)為6,該邊上的高為4,
∴幾何體的體積V=
1
2
×6×4×8=96.
故答案為:96.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱與底面垂直,點(diǎn)D是棱BC的中點(diǎn).
(1)求證:AD⊥BC1;
(2)求證:A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有如下四個(gè)命題:
①甲乙兩組數(shù)據(jù)分別為甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67,則甲乙的中位數(shù)分別為45和44.
②相關(guān)系數(shù)r=-0.83,表明兩個(gè)變量的相關(guān)性較弱.
③若由一個(gè)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得K2的觀測(cè)值k≈4.103,那么有95%的把握認(rèn)為兩個(gè)變量有關(guān).
④用最小二乘法求出一組數(shù)據(jù)(xi,yi),(i=1,…,n)的回歸直線方程
y
=
b
x+
a
后要進(jìn)行殘差分析,相應(yīng)于數(shù)據(jù)(xi,yi),(i=1,…,n)的殘差是指
ei
=yi-(
b
xi+
a
).
以上命題“錯(cuò)誤”的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=lnm+2i是純虛數(shù),則
m
0
1-x2
dx等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線f(x,y)=0(或y=f(x))在其上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線存在自公切線的序號(hào)為
 
(寫出所有滿足題意的序號(hào))
①y=3sinx+4cosx      
②x2-y2=1  
③y=x2-|x|
④|x|+1=
4-y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f1(x)=cosx,定義fn+1(x)為fn(x)的導(dǎo)數(shù),即fn+1(x)=f′n(x),n∈N*,若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=
1
3
,則cos2A的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,若an+an+1=7n+5,n∈N*,則a1+a100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=a1-x(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny=0(m>-1,n>0)上,則
1
m+1
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四個(gè)邊長(zhǎng)為1的小正方形排成一個(gè)大正方形,AB是大正方形的一條邊,Pi(i=1,2,…,7)是小正方形的其余頂點(diǎn),則
AB
APi
(i=1,2,…,7)的不同值的個(gè)數(shù)為(  )
A、7B、5C、3D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案