8.已知sinα+cosα=$\frac{1}{4}$,則sin2α=-$\frac{15}{16}$.

分析 把已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡(jiǎn),再利用二倍角的正弦函數(shù)公式變形,即可求出sin2α的值.

解答 解:把已知等式兩邊平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{16}$,
即2sinαcosα=-$\frac{15}{16}$,
則sin2α=2sinαcosα=-$\frac{15}{16}$,
故答案為:-$\frac{15}{16}$

點(diǎn)評(píng) 此題考查了二倍角的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.圓A:x2+y2+4x+2y+1=0與圓B:x2+y2-2x-6y+1=0的位置關(guān)系是外切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-2,0),點(diǎn)B是圓C:(x-2)2+y2=4上的點(diǎn),點(diǎn)M為AB的中點(diǎn),若直線$l:y=kx-\sqrt{5}k$上存在點(diǎn)P,使得∠OPM=30°,則實(shí)數(shù)k的取值范圍為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知拋物線過(guò)點(diǎn)(a,2),焦點(diǎn)到準(zhǔn)線的距離為-2a,則拋物線的標(biāo)準(zhǔn)方程為x2=32y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求下列拋物線的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在y軸上,焦點(diǎn)到準(zhǔn)線距離為1;
(2)焦點(diǎn)在直線2x-y+2=0上;
(3)拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f($\frac{θ}{2}$+$\frac{5π}{12}$)=-$\frac{\sqrt{3}}{12}$,0<θ<$\frac{π}{2}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.當(dāng)m在什么范圍內(nèi)變化時(shí),不等式3${\;}^{{x}^{2}+27lo{{g}_{m}}^{3}}$>m3對(duì)一切x∈R恒定立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若方程x+y-4$\sqrt{x+y}$+2k=0表示兩條不同直線,則k的取值范圍是( 。
A.k<2B.k≤2C..0≤k<2D.0≤k≤2

查看答案和解析>>

同步練習(xí)冊(cè)答案