20.以下命題中,正確命題是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$B.若$\overrightarrow{a}$,$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$
C.若$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow$D.若|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}∥\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$

分析 根據(jù)平面向量相等是模長相等,方向相同,對選項中的命題進(jìn)行判斷即可.

解答 解:對于A,當(dāng)|$\overrightarrow{a}$|=|$\overrightarrow$|時,$\overrightarrow{a}$=$\overrightarrow$不一定成立,∴命題A錯誤;
對于B,當(dāng)$\overrightarrow{a}$,$\overrightarrow$都是單位向量時,$\overrightarrow{a}$=$\overrightarrow$不一定成立,∴命題B錯誤;
對于C,當(dāng)$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=$\overrightarrow{0}$時,則$\overrightarrow{a}$=$\overrightarrow$=$\overrightarrow{0}$,命題C正確;
對于D,當(dāng)|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}∥\overrightarrow$時,$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$,∴命題D錯誤.
故選:C.

點評 本題考查了平面向量相等的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{e^x}{x+a}$,(a<3且a∈Z),且函數(shù)f(x)在區(qū)間(-1,0)上單調(diào)遞增,定義在R上的函數(shù)g(x)=(x+b)(x2-8),且函數(shù)g(x)在x=1處的切線與直線x-y=0垂直.
(Ⅰ)求函數(shù)f(x)與函數(shù)g(x)的解析式;
(Ⅱ)已知函數(shù)F(x)=$\left\{\begin{array}{l}f(x)•g(x),x≠-2\\-4{e^{-2}},x=-2\end{array}$,試問:是否存在實數(shù)a,b,其中[a,b]⊆(-∞,4],使得函數(shù)F(x)的值域也為[a,b]?若能,請求出相應(yīng)的a、b;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知直線l:x=my+1過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線x2=4$\sqrt{3}$y的焦點為橢圓的上頂點,求橢圓C的方程.
(2)若點N($\frac{{a}^{2}+1}{2}$,0)為x軸上一點,求證:$\overrightarrow{AN}$=λ$\overrightarrow{NE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在(1+x)n的展開式中,第9項為( 。
A.C${\;}_{n}^{9}$x9B.C${\;}_{n}^{8}$x8C.C${\;}_{n}^{9}$xn-9D.C${\;}_{n}^{8}$xn-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α∈(-$\frac{π}{2}$,0),sinα+cosα=$\frac{1}{5}$
(1)求sinα-cosα的值;
(2)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校衛(wèi)生所成立了調(diào)查小組,調(diào)查“按時刷牙與患齲齒的關(guān)系”,對該校某年級700 名學(xué)生進(jìn)行檢查,按患齲齒和不患齲齒分類,得匯總數(shù)據(jù):按時刷牙且不患齲齒的學(xué)生有60 名,不按時刷牙但不患齲齒的學(xué)生有100 名,按時刷牙但患齲齒的學(xué)生有 140 名.
(1)能否在犯錯概率不超過 0.01 的前提下,認(rèn)為該年級學(xué)生的按時刷牙與患齲齒有關(guān)系?
(2)4名校衛(wèi)生所工作人員甲、乙、丙、丁被隨機(jī)分成兩組,每組 2 人,一組負(fù)責(zé)數(shù)據(jù)收集,
另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到“負(fù)責(zé)收集數(shù)據(jù)組”并且工作人員乙分到“負(fù)責(zé)數(shù)據(jù)處理組”的概率
P(K2≥k00.0100.0050.001
k06.6357.87910.828
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.我國對PM2.5采用如下標(biāo)準(zhǔn):
PM2.5日均值m(微克/立方米)空氣質(zhì)量等級
m<35一級
35≤m≤75二級
m>75超標(biāo)
某地4月1日至15日每天的PM2.5監(jiān)測數(shù)據(jù)如莖葉圖所示.
(Ⅰ)期間劉先生有兩天經(jīng)過此地,這兩天此地PM2.5監(jiān)測數(shù)據(jù)均未超標(biāo).請計算出這兩天空氣質(zhì)量恰好有一天為一級的概率;
(Ⅱ)從所給15天的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知某運(yùn)動員每次投籃命中的概率都為40%.現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示命中,用5,6,7,8,9,0表示不命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
907    966    191     925     271    932    812    458     569   683
431    257    393     027     556    488    730    113     537   989
據(jù)此估計,該運(yùn)動員三次投籃恰有兩次命中的概率為(  )
A.0.35B.0.30C.0.25D.0.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l的方程x=a,a∈R,分別交曲線y=πsinx和y=πcosx不同的兩點M,N,則線段|MN|的取值范圍是(  )
A.[0,π]B.[0,$\sqrt{2}$π]C.[0,$\sqrt{3}π$]D.[0,2π]

查看答案和解析>>

同步練習(xí)冊答案