當(dāng)α∈(0,)時(shí),求證:sinα<α<tanα.

證明:如圖,在直角坐標(biāo)系中作出單位圓,α的終邊與單位圓交于P,α的正弦線(xiàn)、正切線(xiàn)分別為MP、AT,則MP=sinα,AT=tanα.

∵SAOP=OA·MP=sinα,S扇形AOP=αr2=α,SAOT=OA·AT=tanα,又SAOP<S扇形AOP<SAOT,

sinα<α<tanα,即sinα<α<tanα.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)
,(A≠0)
(1)當(dāng)0≤x≤
π
2
時(shí),求y=f(sinx)的最大值;
(2)若對(duì)任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實(shí)數(shù)A的取值范圍;
(3)問(wèn)a取何值時(shí),方程f(sinx)=a-sinx在[0,2π)上有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)通過(guò)實(shí)驗(yàn)研究,專(zhuān)家們發(fā)現(xiàn):初中學(xué)生聽(tīng)課的注意力指標(biāo)數(shù)是隨著老師講課時(shí)間的變化而變化的,講課開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間,學(xué)生的興趣保持平穩(wěn)的狀態(tài),隨后開(kāi)始分散.學(xué)生注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示學(xué)生注意力越集中).當(dāng)0≤x≤10時(shí),圖象是拋物線(xiàn)的一部分,當(dāng)10≤x≤20和20≤x≤40時(shí),圖象是線(xiàn)段.
(1)當(dāng)0≤x≤10時(shí),求注意力指標(biāo)數(shù)y與時(shí)間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)競(jìng)賽題需要講解24分鐘.問(wèn)老師能否經(jīng)過(guò)適當(dāng)安排,使學(xué)生在聽(tīng)這道題時(shí),注意力的指標(biāo)數(shù)都不低于36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x+a)=(x+a)|x|,x∈R.
(1)求f(x)的解析式;
(2)若f(1)>2,求a的取值范圍;
(3)當(dāng)0≤x≤1時(shí),求f(x)的最大值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)的坐標(biāo)分別是A(0,
3
2
)
,B(0,3),C(cosθ,sinθ),其中
π
2
<θ<
2
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)當(dāng)0≤x≤
π
2
時(shí),求函數(shù)f(x)=2sin(2x+θ)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案