5.已知變量x,y滿足$\left\{\begin{array}{l}{x≥y}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x+y的最大值為3.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點C時,直線y=-2x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
代入目標函數(shù)z=2x+y得z=2×2-1=4-1=3.
即目標函數(shù)z=2x+y的最大值為3.
故答案為:3

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{sin(π+x)cos(π-x)}{{sin(\frac{π}{2}-x)cos(2π+x)}}$.
(1)化簡函數(shù)f(x)的解析式;
(2)若α為第三象限角且$f(α)=\frac{1}{3}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知點A(1,-3),B(-5,5),則線段AB中點到直線4x-3y+1=0的距離等于( 。
A.$\frac{4}{5}$B.$\frac{10}{7}$C.$\frac{12}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2$\sqrt{3}$,且AC,BD交于點O,E是PB上任意一點.
(1)求證:AC⊥DE
(2)已知二面角A-PB-D的余弦值為$\frac{\sqrt{15}}{5}$,若E為PB的中點,求EC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)集合M={x|y=ln(x-1)},N={x|x=2t,-1≤t≤2},則M∩N=(  )
A.(1,4]B.[$\frac{1}{2}$,1)C.(1,2]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.過點M(0,4)的直線l交拋物線x2=4y于AA,B兩點,若△AOM與△BOM的面積比為2:1(O為坐標原點),則直線l的斜率為±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖所示,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB=2
(I)證明:BC1∥平面A1CD
(II)求直線EC1與面A1DC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,函數(shù)y=log24x圖象上的兩點A,B和y=log2x上的點C,線段AC平行于y軸,三角形ABC為正三角形時,點B的坐標為(p,q),則p2×2q=( 。
A.12B.$12\sqrt{3}$C.6D.$6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)函數(shù)G(x)=xlnx+(1-x)ln(1-x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數(shù)f(x)=2a•ex+1+$\frac{a+1}{x}$-2(a+1)(a>0),若對于任意的x∈(0,+∞),恒有f(x)≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案