(本題滿分16分)

設(shè)函數(shù).

(1)若=1時(shí),函數(shù)取最小值,求實(shí)數(shù)的值;

(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)若,證明對(duì)任意正整數(shù),不等式都成立.

(1)- 4.(2)(3)詳見(jiàn)解析

【解析】

試題分析:(1)利用導(dǎo)數(shù)求開(kāi)區(qū)間函數(shù)最值,先從導(dǎo)函數(shù)出發(fā),探求極值點(diǎn)即為最值點(diǎn),最后需列表驗(yàn)證:由(2)函數(shù)在定義域上是單調(diào)函數(shù),即導(dǎo)函數(shù)不變號(hào), ≥0或≤0在( - 1,+ ∞)上恒成立. 即2x2 +2x+b≥0在( - 1,+ ∞)上恒成立或2x2 +2x+b≤0在( - 1,+ ∞)上恒成立,利用變量分離及函數(shù)最值可得:實(shí)數(shù)b的取值范圍是.(3)證明和項(xiàng)不等式,關(guān)鍵分析出和項(xiàng)與通項(xiàng)關(guān)系:即證當(dāng)時(shí),有f(x) <x3.這可利用導(dǎo)數(shù)給予證明

試題解析:(1)由x + 1>0得x> – 1∴f(x)的定義域?yàn)? - 1,+ ∞),

對(duì)x∈ ( - 1,+ ∞),都有f(x)≥f(1),∴f(1)是函數(shù)f(x)的最小值,故有f/ (1) = 0,

解得b= - 4. 經(jīng)檢驗(yàn),列表(略),合題意;

(2)∵又函數(shù)在定義域上是單調(diào)函數(shù),

≥0或≤0在( - 1,+ ∞)上恒成立.

≥0,∵x + 1>0,∴2x2 +2x+b≥0在( - 1,+ ∞)上恒成立,

即b≥-2x2 -2x = 恒成立,由此得b≥;

≤0, ∵x + 1>0, ∴2x2 +2x+b≤0,即b≤- (2x2+2x)恒成立,

因-(2x2+2x) 在( - 1,+ ∞)上沒(méi)有最小值,∴不存在實(shí)數(shù)b使f(x) ≤0恒成立.

綜上所述,實(shí)數(shù)b的取值范圍是.

(3)當(dāng)b= - 1時(shí),函數(shù)f(x) = x2 - ln(x+1),令函數(shù)h(x)=f(x) – x3 = x2 – ln(x+1) – x3,

則h/(x) = - 3x2 +2x - ,

∴當(dāng)時(shí),h/(x)<0所以函數(shù)h(x)在上是單調(diào)遞減.

又h(0)=0,∴當(dāng)時(shí),恒有h(x) <h(0)=0,即x2 – ln(x+1) <x3恒成立.

故當(dāng)時(shí),有f(x) <x3..

則有

,故結(jié)論成立。

考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)性質(zhì)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省信陽(yáng)市畢業(yè)班第二次調(diào)研檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,則的大小關(guān)系是( )

(A). (B) (C) (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江西省南昌市高三上學(xué)期第四次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知滿足約束條件的最小值為,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開(kāi)學(xué)聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,點(diǎn)分別是橢圓的上頂點(diǎn)和右焦點(diǎn),直線與橢圓交于另一點(diǎn),過(guò)中心作直線的平行線交橢圓于兩點(diǎn),若則橢圓的離心率為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開(kāi)學(xué)聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知等比數(shù)列中,各項(xiàng)都是正數(shù),且成等差數(shù)列,則等于 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開(kāi)學(xué)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)實(shí)數(shù)a,x,y,滿足則xy的取值范圍是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開(kāi)學(xué)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知向量a,b,滿足|a|=1,| b |=,a+b=(,1),則向量a+b與向量a-b的夾角是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖南省名校高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

不等式的解集是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


二項(xiàng)式展開(kāi)式中的常數(shù)項(xiàng)為  _________.

查看答案和解析>>

同步練習(xí)冊(cè)答案