,,,(其中)的離心率分別為,則(   ).
A.B.
C.D.大小不確定
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分15分)已知橢圓ab>0)的離心率,過點A(0,-b)和Ba,0)的直線與原點的距離為 
(1)求橢圓的方程 
(2)已知定點E(-1,0),若直線ykx+2(k≠0)與橢圓交于C D兩點 問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線的極坐標方程是ρ=2,以極點為原點,極軸為軸的正半軸建立平面直角坐標系
(1) 寫出曲線的直角坐標方程;
(2)若把上各點的坐標經(jīng)過伸縮變換后得到曲線,求曲線上任意一點到兩坐標軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,以原點為圓點,橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連接PB交隨圓C于另一點E,證明直線AE與x軸相交于定點Q;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線l:與橢圓相交A,B兩點,點C是橢圓上的動點,則面積的最大值為              。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上橢圓的長軸的端點分別為,為橢圓的中心,為右焦點,且,離心率。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰好為的垂心?若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

離心率,一條準線為的橢圓的標準方程是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設點是橢圓上一點,分別是橢圓的左、右焦點,的內(nèi)心,若,則該橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1、F2為曲線C1+ =1的焦點,P是曲線與C1的一個交點,則△PF1F2的面積為_____________

查看答案和解析>>

同步練習冊答案