直線a與平面α所成角為,直線b在平面α內,則直線a與b所成的角的取值范圍是________

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1,等腰梯形ABCD中,AB=2,CD=4,∠ADC=∠BCD=60°.取線段CD中點E,將△ADE沿AE折起,如圖2所示.
(1)當平面ADE折到與底面ABCE所成的二面角為900時,如圖3所示,求此時二面角A-BD-C平面角的余弦值.
(2)在將△ADE開始折起到與△ABE重合的過程中,求直線DC與平面ABCE所成角的正切值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在五棱錐P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°精英家教網(wǎng)
(1)求二面角P-DE-A的大小
(2)求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知三棱錐A-BCD的所有棱長都相等,則直線AB與平面BCD所成角的大小為
arccos
3
3
arccos
3
3
(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,點M為棱AA1的中點,則直線BC1與平面MC1D1所成角的正弦值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD中,AB=a,AD=b,過點D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對角線AC折起到△PAC的位置,使二面角P-AC-B的大小為60°.過P作PH⊥EF于H.
(I)求證:PH⊥平面ABC;
(Ⅱ)若a=
2
b
,求直線DP與平面PBC所成角的大;
(Ⅲ)若a+b=2,求四面體P-ABC體積的最大值.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案