曲線y=x3-2x+4在點(diǎn)(1,3)處的切線的傾斜角為( 。
分析:利用導(dǎo)數(shù)的幾何意義即可得出.
解答:解:∵y′=3x2-2,
∴y′|x=1=3×12-2=1.
設(shè)切線的傾斜角為α,則tanα=1,∵α∈[0°,180°),解得α=45°.
故選C.
點(diǎn)評(píng):熟練掌握導(dǎo)數(shù)的幾何意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、若曲線y=x3-2x+a與直線y=x+1相切,則常數(shù)a的值為
-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3-2x在點(diǎn)(1,-1)處的切線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=-x3+2x在點(diǎn)(-1,-1)處的切線的傾斜角是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l與坐標(biāo)軸圍成的三角形面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案