【題目】如圖,已知拋物線:與圓: ()相交于, , ,四個點,
(1)求的取值范圍;
(2)設(shè)四邊形的面積為,當(dāng)最大時,求直線與直線的交點的坐標(biāo).
【答案】(1)(2)點的坐標(biāo)為
【解析】
將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程, 拋物線與圓有四個交點需滿足關(guān)于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.
不妨設(shè)拋物線與圓的四個交點坐標(biāo)為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標(biāo),再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達(dá)式,令,由及知,對關(guān)于的面積函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時的值,進(jìn)而求出點坐標(biāo).
(1)聯(lián)立拋物線與圓的方程
消去,得.
由題意可知在上有兩個不等的實數(shù)根.
所以解得,
所以的取值范圍為.
(2)根據(jù)(1)可設(shè)方程的兩個根分別為,(),
則,,,,
且,,
所以直線、的方程分別為
,
,
聯(lián)立方程可得,點的坐標(biāo)為,
因為四邊形為等腰梯形,
所以
,
令,則,
所以,
因為,所以當(dāng)時,;當(dāng)時,,
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
即當(dāng)時,四邊形的面積取得最大值,
因為,點的坐標(biāo)為,
所以當(dāng)四邊形的面積取得最大值時,點的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點,,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)為上一點(軸上方),直線,分別交橢圓于,兩點,若,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖空間幾何體中,與,均為邊長為的等邊三角形,平面平面,平面平面.
(1)試在平面內(nèi)作一條直線,使得直線上任意一點與的連線均與平面平行,并給出詳細(xì)證明;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點.
(1)若E是SD的中點,求證:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2,且DEDS,求二面角S﹣AC﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求的最大值;
(2)如果函數(shù)在公共定義域D上,滿足,那么就稱為的“伴隨函數(shù)”.已知函數(shù),.若在區(qū)間上,函數(shù)是的“伴隨函數(shù)”,求實數(shù)的取值范圍;
(3)若,正實數(shù)滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學(xué)員有5次參加科目二考試的機(jī)會(這5次考試機(jī)會中任何一次通過考試,就算順利通過,即進(jìn)入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補(bǔ)考費.某駕校對以往2000個學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計,得到下表:
考試情況 | 男學(xué)員 | 女學(xué)員 |
第1次考科目二人數(shù) | 1200 | 800 |
第1次通過科目二人數(shù) | 960 | 600 |
第1次未通過科目二人數(shù) | 240 | 200 |
若以上表得到的男、女學(xué)員第1次通過科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機(jī)會為止.
(1)求這對夫妻在本次報名中參加科目二考試都不需要交補(bǔ)考費的概率;
(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補(bǔ)考費用之和為元,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線在第一象限的交點為,橢圓的左、右焦點分別為,其中也是拋物線的焦點,且.
(1)求橢圓的方程;
(2)過的直線(不與軸重合)交橢圓于兩點,點為橢圓的左頂點,直線分別交直線于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在四棱錐中, 底面, ,, ,,點為棱的中點.
(1)證明::
(2)求直線與平面所成角的正弦值;
(3)若為棱上一點, 滿足, 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;
(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:
①點的極角;
②面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com