設(shè)函數(shù),
(1)對(duì)于任意實(shí)數(shù)x,f'(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.
【答案】分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),然后求出f'(x)的最小值,使f'(x)min≥m成立即可.
(2)若欲使方程f(x)=0有且僅有一個(gè)實(shí)根,只需求出函數(shù)的極大值小于零,或求出函數(shù)的極小值大于零即可.
解答:解:(1)f′(x)=3x2-9x+6=3(x-1)(x-2),
因?yàn)閤∈(-∞,+∞),f′(x)≥m,
即3x2-9x+(6-m)≥0恒成立,
所以△=81-12(6-m)≤0,
,即m的最大值為
(2)因?yàn)楫?dāng)x<1時(shí),f′(x)>0;
當(dāng)1<x<2時(shí),f′(x)<0;當(dāng)x>2時(shí),f′(x)>0;
所以當(dāng)x=1時(shí),f(x)取極大值
當(dāng)x=2時(shí),f(x)取極小值f(2)=2-a;
故當(dāng)f(2)>0或f(1)<0時(shí),
方程f(x)=0僅有一個(gè)實(shí)根、解得a<2或
點(diǎn)評(píng):本題主要考查了一元二次函數(shù)恒成立問(wèn)題,以及函數(shù)與方程的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),其定義域?yàn)镈,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說(shuō)明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中,正確的是( 。
①對(duì)于定義域?yàn)镽的函數(shù)f(x),若函數(shù)f(x)滿足f(x+1)=f(1-x),則函數(shù)f(x)的圖象關(guān)于x=1對(duì)稱;
②當(dāng)a>1時(shí),任取x∈R都有ax>a-x
③“a=1”是“函數(shù)f(x)=lg(ax+1)在(0,+∞)上單調(diào)遞增”的充分必要條件;
④設(shè)a∈{-1,1,
1
2
,3},則使函數(shù)y=xa的定義域?yàn)镽且該函數(shù)為奇函數(shù)的所有a的值為1,3;
⑤已知a是函數(shù)f(x)=2x-log0.5x的零點(diǎn),若0<x0<a,則f(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省南通市啟東中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)若是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案