13.已知函數(shù)f(x)=2sin(3x-$\frac{π}{6}$).
(1)求f(0)、f($\frac{2π}{9}$);
(2)分別指出函數(shù)f(x)的振幅、相位、初相位的值,并求出其最小正周期;
(3)求函數(shù)f(x)的遞增區(qū)間和遞減區(qū)間.

分析 (1)根據(jù)函數(shù)f(x)的解析式計算f(0)與f($\frac{2π}{9}$)即可;
(2)根據(jù)函數(shù)f(x)的解析式得出它的振幅、相位與初相位以及最小正周期;
(3)根據(jù)正弦函數(shù)的單調(diào)性,求出函數(shù)f(x)的遞增與遞減區(qū)間.

解答 解:(1)∵函數(shù)f(x)=2sin(3x-$\frac{π}{6}$),
∴f(0)=2sin(-$\frac{π}{6}$)=-2sin$\frac{π}{6}$=-2×$\frac{1}{2}$=-1,
f($\frac{2π}{9}$)=2sin(3×$\frac{2π}{9}$-$\frac{π}{6}$)=2sin$\frac{π}{2}$=2×1=2;
(2)函數(shù)f(x)=2sin(3x-$\frac{π}{6}$)的振幅是2,
相位是3x-$\frac{π}{6}$,初相位是-$\frac{π}{6}$,
最小正周期是T=$\frac{2π}{3}$;
(3)令-$\frac{π}{2}$+2kπ≤3x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{π}{3}$+2kπ≤3x≤$\frac{2π}{3}$+2kπ,k∈Z,
∴-$\frac{π}{9}$+$\frac{2kπ}{3}$≤x≤$\frac{2π}{9}$+$\frac{2kπ}{3}$,k∈Z,
∴函數(shù)f(x)的遞增區(qū)間是[-$\frac{π}{9}$+$\frac{2kπ}{3}$,$\frac{2π}{9}$+$\frac{2kπ}{3}$],k∈Z;
同理,f(x)的遞減區(qū)間是[$\frac{2π}{9}$+$\frac{2kπ}{3}$,$\frac{5π}{9}$+$\frac{2kπ}{3}$],k∈Z.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應用問題,也考查了數(shù)形結合思想的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知兩個圓錐,底面重合在一起,其中一個圓錐頂點到底面的距離為2cm,另一個圓錐頂點到底面的距離為3cm,則其直觀圖中這兩個頂點之間的距離為( 。
A.2cmB.3cmC.2.5cmD.5cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知方程x2-mx+4=0在-1≤x≤1上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}中,a1=1,an+1=n+an,則$\frac{{a}_{n}}{n}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知0(0,0),A(3,0),B(0,4),P是△OAB的內(nèi)切圓上一動點,則以PO、PA、PB為半徑的三個圓面積之和的最大值為(  )
A.10πB.12πC.22πD.25π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{-sinx}$+$\sqrt{tanx}$的定義域是( 。
A.2kπ+π≤x≤2kπ+$\frac{3π}{2}$,k∈ZB.2kπ+π<x<2kπ+$\frac{3π}{2}$,k∈Z
C.2kπ+π≤x<2kπ+$\frac{3π}{2}$,k∈ZD.2kπ+π<x<2kπ+$\frac{3π}{2}$或x=kπ,k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求函數(shù)f(x)=$\sqrt{21+4x-{x}^{2}}-\frac{lo{g}_{5}(1-x)}{x+1}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知y=f(x)是定義域為R的奇函數(shù),且當x>0時,f(x)=3x+x3-5,則函數(shù)y=f(x)的零點的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設x∈R,則“|x-2|<1”是“x2+x-2>0”的充分不必要條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要)

查看答案和解析>>

同步練習冊答案