17.“$φ=\frac{π}{2}$”是“函數(shù)f(x)=sin(2x+φ)是偶函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義結(jié)合三角函數(shù)的性質(zhì)進(jìn)行判斷即可.

解答 解:若函數(shù)f(x)=sin(2x+φ)為偶函數(shù),
則φ=$\frac{π}{2}$+kπ,k∈Z,
則“φ=$\frac{π}{2}$”是“函數(shù)f(x)=sin(2x+φ)為偶函數(shù)”的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)三角函數(shù)是偶函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在三棱錐S-ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=5$\sqrt{5}$.
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS-ABC
(3)求側(cè)面SBC與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.sin$\frac{4π}{3}$cos$\frac{5π}{6}$=( 。
A.-$\frac{1}{4}$B.$\frac{3}{4}$C.-$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.命題“若a>-3,則a>0”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:m>2,命題q:x2+2x-m>0對(duì)x∈[1,2]恒成立.若p∧q為真命題,則實(shí)數(shù)m的取值范圍是(  )
A.2<m<3B.m>2C.m<-1或m>2D.m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)全集U=R,集合$A=\{x|\frac{x}{x+3}<0\},B=\{x|x≤-1\}$,則集合A∩(∁UB)=(  )
A.{x|x>0}B.{x|x<-3}C.{x|-3<x≤-1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x>0時(shí),f(x)=-x+2,則當(dāng)x<0時(shí),f(x)的表達(dá)式為(  )
A.-x+2B.x-2C.x+2D.-x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)滿足$f(x)=4f({\frac{1}{x}})$,當(dāng)$x∈[{\frac{1}{4},1}]$時(shí),f(x)=lnx,若在$[{\frac{1}{4},4}]$上,方程f(x)=kx有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A.$[{-4ln4,-\frac{4}{e}}]$B.[-4ln4,-ln4]C.$[{-\frac{4}{e},-ln4}]$D.$({-\frac{4}{e},-ln4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.三棱錐P-ABC中,∠APB=∠BPC=∠CPA=60°,則直線PC與平面PAB所成角的余弦值( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案