精英家教網 > 高中數學 > 題目詳情
在△ABC中,∠A=
π
4
,D是BC邊上一點(D與B、C不重合),且|
AB
|
2
=|
AD
|
2
+
BD
DC
,則∠B=
8
8
分析:先根據|
AB
|
2
=|
AD
|
2
+
BD
DC
,可確定AB=AC,再由∠A,即可求∠B的大。
解答:解:根據題意畫出相應的圖形,如圖所示:

過A作AO⊥BC,交BC于點O,以BC所在的直線為x軸,AO所在的直線為y軸建立平面直角坐標系,
設A(0,a),B(b,0),C(c,0),D(d,0),
|
AB
|
2
=|
AD
|
2
+
BD
DC
,∴|
AB
|
2
=|
AD
|
2
+|
BD
||
DC
|,
∴a2+b2=a2+d2+(d-b)(c-d),即d2-b2+(d-b)(c-d)=0,
∴(d+b)(d-b)+(d-b)(c-d)=0,即(d-b)(b+c)=0,
∵D與B不重合,∴d≠b,即d-b≠0,
∴b+c=0,即b=-c,
∴B與C關于y軸對稱,
∴AB=AC,
∴△ABC為等腰三角形
∠A=
π
4
,∴∠B=
1
2
(π-
π
4
)=
8

故答案為:
8
點評:本題主要考查了解三角形問題,考查了學生分析問題和解決問題的能力.解題的關鍵是通過題設條件建立數學模型,確定△ABC為等腰三角形.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•臨沂一模)已知函數f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數f(x)的單調減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•煙臺二模)在△ABC中,a、b、c為角A、B、C所對的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設內角B為x,周長為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中角A、B、C的對邊分別為a、b、c設向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為(  )

查看答案和解析>>

同步練習冊答案