【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點(diǎn),橢圓的長軸長是4,橢圓長軸長是2,點(diǎn),分別是橢圓的左焦點(diǎn)與右焦點(diǎn).
(1)求橢圓,的方程;
(2)過的直線交橢圓于點(diǎn),,求面積的最大值.
【答案】(1)橢圓的方程為,橢圓的方程是(2)
【解析】
(1)設(shè)橢圓的半焦距為,橢圓的半焦距為,直接利用橢圓的定義得到答案.
(2)設(shè)直線的方程為,聯(lián)立方程得到,
,,利用均值不等式得到答案.
解:(1)設(shè)橢圓的半焦距為,橢圓的半焦距為,由已知,=1,
∵橢圓與橢圓的離心率相等,即,
∴,即,
∴,即,∴,
∴橢圓的方程為,橢圓的方程是;
(2)顯然直線的斜率不為0,故可設(shè)直線的方程為.
聯(lián)立:,得,即,
∴,設(shè),,
則,,∴,
的高即為點(diǎn)到直線:的距離,
∴的面積,
∵,等號成立當(dāng)且僅當(dāng),即時成立
∴,即的面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個球面上。則點(diǎn)O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;
(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是直線上一動點(diǎn),PA、PB是圓的兩條切線,A、B為切點(diǎn),若四邊形PACB面積的最小值是2,則的值是
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),其中為虛數(shù)單位,對于任意復(fù)數(shù),有,.
(1)求的值;
(2)若復(fù)數(shù)滿足,求的取值范圍;
(3)我們把上述關(guān)系式看作復(fù)平面上表示復(fù)數(shù)的點(diǎn)和表示復(fù)數(shù)的點(diǎn)之間的一個變換,問是否存在一條直線,若點(diǎn)在直線上,則點(diǎn)仍然在直線上?如果存在,求出直線的方程,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)為美化環(huán)境,準(zhǔn)備在小區(qū)內(nèi)的草坪的一側(cè)修建一條直路OC,另一側(cè)修建一條休閑大道.休閑大道的前一段OD是函數(shù)的圖象的一部分,后一段DBC是函數(shù)的圖象,圖象的最高點(diǎn)為,且,垂足為點(diǎn)F.
(1)求函數(shù)的解析式;
(2)若在草坪內(nèi)修建如圖所示的矩形兒童樂園PMFE,點(diǎn)P在曲線OD上,其橫坐標(biāo)為,點(diǎn)E在OC上,求兒童樂園的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位開展崗前培訓(xùn)期間,甲、乙2人參加了5次考試,成績統(tǒng)計(jì)如下:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績 | 82 | 82 | 79 | 95 | 87 |
乙的成績 | 95 | 75 | 80 | 90 | 85 |
(1)根據(jù)有關(guān)統(tǒng)計(jì)知識回答問題:若從甲、乙2人中選出1人上崗,你認(rèn)為選誰合適?請說明理由;
(2)根據(jù)有關(guān)概率知識解答以下問題:若一次考試兩人成績之差的絕對值不超過3分,則稱該次考試兩人“水平相當(dāng)”.由上述5次成績統(tǒng)計(jì),任意抽查兩次考試,求至少有一次考試兩人“水平相當(dāng)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設(shè)汽油的價格是每升2元,而汽車每小時耗油升,司機(jī)的工資是每小時14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時,這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),,,動點(diǎn)滿足.
(1)求動點(diǎn)的軌跡方程,并說明方程表示的曲線類型;
(2)當(dāng)時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com