【題目】某段城鐵線路上依次有、、三站,,,在列車運行時刻表上,規(guī)定列車時整從站出發(fā),分到達站并停車,分到達站,在實際運行時,假設列車從站正點出發(fā),在站停留,并在行駛時以同一速度勻速行駛,列車從站到達某站的時間與時刻表上相應時間之差的絕對值稱為列車在該站的運行誤差.

1)分別寫出列車在、兩站的運行誤差;

2)若要求列車在、兩站的運行誤差之和不超過,求的取值范圍.

【答案】1站的運行誤差為站的運行誤差為;(2.

【解析】

1)計算出列車分別到達的時間,利用運行誤差的定義可求得列車在兩站的運行誤差;

2)根據(jù)題意得出,解此不等式即可得出的取值范圍.

1)列出的運行速度為,

所以,列車從站到達站所需的時間為

列車從站到達站所需的時間為,

因此,列車在站的運行誤差為,在站的運行誤差為;

2)由于列車在、兩站的運行誤差之和不超過,則.

時,原不等式變形為,即,解得;

時,原不等式變形為,即,解得,此時

時,原不等式可變形為,即,解得.

綜上所述,的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗.廠家將一批產(chǎn)品發(fā)給商家時,商家按合同規(guī)定也需隨機抽取一定數(shù)量的產(chǎn)品做檢驗,以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐械拿考a(chǎn)品合格的概率為0.8,從中任意取出4件進行檢驗,求至少有1件是合格品的概率;

2)若廠家發(fā)給商家20件產(chǎn)品,其中有3件不合格.按合同規(guī)定該商家從中任取2件,都進行檢驗,只有2件都合格時才接收這批產(chǎn)品,否則拒收.求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一排個空位,四人就坐其中的個位子.

1)若每人左、右兩邊都有空位,有幾種坐法?

2)若個空位中,個相連,另個也相連,但個不連在一起,有幾種坐法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,,若為常數(shù)),則稱等差比數(shù)列”.下列是對等差比數(shù)列的判斷:

不可能為;②等差數(shù)列一定是等差比數(shù)列;

③等比數(shù)列一定是等差比數(shù)列;④等差比數(shù)列中可以有無數(shù)項為.

其中正確的判斷是( .

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱三角形數(shù)列,對于三角形數(shù)列,如果函數(shù)使得仍為一個三角形數(shù)列,則稱是數(shù)列保三角形函數(shù),.

1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列保三角形函數(shù),求的取值范圍;

2)已知數(shù)列的首項為2010,是數(shù)列的前項和,且滿足,證明三角形數(shù)列;

3)根據(jù)保三角形函數(shù)的定義,對函數(shù),和數(shù)列1,提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】202048日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復工復產(chǎn)復市,但是仍然不能麻痹大意,仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區(qū)管理工作,結(jié)合復工復產(chǎn)復市的實際需要,某小區(qū)物業(yè)提供了,兩種小區(qū)管理方案,為了了解哪一種方案最為合理有效,物業(yè)隨機調(diào)查了50名男業(yè)主和50名女業(yè)主,每位業(yè)主對,兩種小區(qū)管理方案進行了投票(只能投給一種方案),得到下面的列聯(lián)表:

方案

方案

男業(yè)主

35

15

女業(yè)主

25

25

1)分別估計方案獲得業(yè)主投票的概率;

2)判斷能否有95%的把握認為投票選取管理方案與性別有關(guān).

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標平面上的一列點,簡記為.若由構(gòu)成的數(shù)列滿足,其中為方向與軸正方向相同的單位向量,則稱點列.

1)判斷,是否為點列,并說明理由;

2)若點列,且點在點的右上方.任取其中連續(xù)三點,判斷的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

3)若點列,正整數(shù),滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到焦點F的距離為.

1)求拋物線M的方程;

2)過點F斜率為k的直線lM相交于C,D兩點,線段的垂直平分線M相交于兩點,點分別為線段的中點.

①試用k表示點的坐標;

②若以線段為直徑的圓過點C,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為.

1)求拋物線C的方程;

2)設直線,對任意的拋物線C上都存在四個點到直線l的距離為,求的取值范圍.

查看答案和解析>>

同步練習冊答案