若一圓弧長等于其所在圓的內(nèi)接正六角形的邊長,則其圓心角的弧度數(shù)為( 。
A、2
B、
3
C、
2
D、1
考點:弧長公式
專題:三角函數(shù)的求值
分析:利用圓的內(nèi)接正六角形的邊長等于圓的半徑r,圓的弧度數(shù)的定義即可得出.
解答: 解:∵圓的內(nèi)接正六角形的邊長等于圓的半徑r,又一圓弧長等于其所在圓的內(nèi)接正六角形的邊長,
則其圓心角的弧度數(shù)為1.
故選:D.
點評:本題考查了圓的內(nèi)接正六角形的邊長等于圓的半徑的性質(zhì)、圓的弧度數(shù)的定義,考查了理解能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

經(jīng)過兩點A(
6
,1),B(
3
2
)的橢圓的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面給出了四個式子,其中值為
0
的有( 。
AB
+
BC
+
CA
;                 
OA
+
OC
+
BO
+
CO

AB
-
AC
+
BD
-
CD
;             
NQ
+
QP
+
MN
-
MP
A、①②B、①③④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
1
|x-1|
 (x≠1)
1 (x=1)
,若關于x的方程f2(x)+bf(x)+c=0有三個不同的實數(shù)解x1、x2、x3,則x
 
2
1
+x
 
2
2
+x
 
2
3
等于( 。
A、5
B、2+
2
b2
C、13
D、3+
1
c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π,若|2
a
+
b
|=|
a
-2
b
|,則β-α等于(  )
A、
π
2
B、-
π
2
C、
π
4
D、-
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x||x-1|≤2},B={x|x2-6x+8<0},則A∩B等于( 。
A、[-1,4)
B、(2,3)
C、(2,3]
D、(-1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l經(jīng)過拋物線y2=4x的焦點,且與拋物線相交于A、B兩點,若弦AB中點的橫坐標為4,則|AB|=( 。
A、12B、10C、8D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直角坐標平面內(nèi)兩點P,Q滿足條件:
①P,Q都在函數(shù)f(x)的圖象上;
②P,Q關于原點對稱,則稱點對(P,Q)是函數(shù)f(x)的一個“友好點對”(點對(P,Q)與點對(Q,P)為同一個“友好點對”).
已知函數(shù)f(x)=
2x2+4x+1,x<0
2
ex
,x≥0
,則f(x)的“友好點對”有( 。﹤.
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)的零點,經(jīng)過若干次運算后函數(shù)的零點在區(qū)間(a,b)內(nèi),當|a-b|<ε(ε為精確度)時,函數(shù)零點近似值x0=
a+b
2
與真實零點的誤差最大不超過( 。
A、
ε
4
B、
ε
2
C、ε
D、2ε

查看答案和解析>>

同步練習冊答案