【題目】如圖,已知四棱錐的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點(diǎn).

1證明:PE⊥BC;

2若∠APB=∠ADB=60°,求直線(xiàn)PA與平面PEH所成角的正弦值.

【答案】1見(jiàn)解析2

【解析】1證明以H為原點(diǎn),HA,HB,HP所在直線(xiàn)分別為x,y,z建立空間直角坐標(biāo)系,如圖,設(shè),,,則A1,0,0,B0,1,0

Cm, 0, 0,P0, 0,nD0,m, 0,E,,0可得,,-n,m,-1, 0

因?yàn)?/span>·++0=0,所以PE⊥BC.

2由已知條件可得m,n=1,故C,0, 0,D0,-,0,

E,-,0,P0, 0, 1,,

設(shè)x,y,z為平面PEH的法向量,

因此可以取1,,0,

1, 0,-1,所以|cos〈〉|=,

所以直線(xiàn)PA與平面PEH所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求證:f(x)的圖象在g(x)圖象的上方;
(Ⅱ) 若f(x)和g(x)的圖象有公共點(diǎn)P,且在點(diǎn)P處的切線(xiàn)相同,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB的中點(diǎn),且△PDB是正三角形,PA⊥PC.

(1)求證:平面PAC⊥平面ABC.

(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=logax(a>0a≠1)的圖象過(guò)點(diǎn)(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定義域.

(3)(2)的條件下,g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(2)若, 上的最小值為-2,求m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

試求:(1)y與x之間的回歸方程;

(2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知坐標(biāo)平面上的凸四邊形 ABCD 滿(mǎn)足 =(1, ), =(﹣ ,1),則凸四邊形ABCD的面積為; 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c的圖象過(guò)點(diǎn)(﹣1,3),且關(guān)于直線(xiàn)x=1對(duì)稱(chēng)
(Ⅰ)求f(x)的解析式;
(Ⅱ)若m<3,求函數(shù)f(x)在區(qū)間[m,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是直線(xiàn)x=4上一動(dòng)點(diǎn),以P為圓心的圓Γ經(jīng)定點(diǎn)B(1,0),直線(xiàn)l是圓Γ在點(diǎn)B處的切線(xiàn),過(guò)A(﹣1,0)作圓Γ的兩條切線(xiàn)分別與l交于E,F(xiàn)兩點(diǎn).
(1)求證:|EA|+|EB|為定值;
(2)證明:設(shè)直線(xiàn)l交直線(xiàn)x=4于點(diǎn)Q,證明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

同步練習(xí)冊(cè)答案