(本小題12分)
已知函數(shù),其中
求函數(shù)的最大值和最小值;
若實數(shù)滿足:恒成立,求的取值范圍。

,

解析試題分析:解:(1)∵
       —————————————2’
,∵,∴。
)—————————————4’
時,是減函數(shù);當時,是增函數(shù)。
———————————————8’
(2)∵恒成立,即恒成立。∴恒成立。
由(1)知,∴。
的取值范圍為    ————————————————12’
考點:二次函數(shù)與不等式的恒成立問題
點評:解決該試題的關鍵是對于變量的整體代換求解函數(shù)的最值,同時能結(jié)合不等式恒成立分離參數(shù)來求解參數(shù)的范圍屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知定義域為的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分7分)
已知函數(shù)
(Ⅰ)當時,求函數(shù)的定義域;
(Ⅱ)當函數(shù)的定義域為R時,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)上為增函數(shù),求正實數(shù)的取值范圍;
(2)當時,求上的最大值和最小值;
(3) 當時,求證:對大于1的任意正整數(shù),都有。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),,滿足,.
(1)求,的值;
(2)若各項為正的數(shù)列的前項和為,且有,設,求數(shù)列的前項和
(3)在(2)的條件下,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù).
(1) 若不等式的解集為,求實數(shù)的值;
(2) 在(1)的條件下,使能成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(1)解關于x的不等式f(x)<0;
(2)當=-2時,不等式f(x)>ax-5在上恒成立,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)有兩個零點,求的取值范圍;
(2)若函數(shù)在區(qū)間上各有一個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案