分析 設圓柱的半徑為r,由$\frac{r}{2}=\frac{6-x}{6}$,可得r=$\frac{6-x}{3}$,又l=x(0<x<6),可得圓柱側(cè)面積,利用配方法求出最大值.
解答 解:設圓柱的半徑為r,由$\frac{r}{2}=\frac{6-x}{6}$,可得r=$\frac{6-x}{3}$,又l=x(0<x<6)
所以圓柱的側(cè)面積=$2π•\frac{6-x}{3}•x=-\frac{2π}{3}[(x-3)^{2}-9]$,當且僅當x=3cm時圓柱的側(cè)面積最大.
故答案為3cm.
點評 本題考查圓柱側(cè)面積,考查配方法,考查學生分析解決問題的能力,比較基礎(chǔ).
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $\frac{{\sqrt{10}}}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,3) | B. | (-1,2) | C. | (-2,2) | D. | (-2,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\frac{3}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{15}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 線段 | B. | 圓 | C. | 橢圓 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com