在正三棱柱ABCA1B1C1中,點D是BC的中點,BC=BB1.
 
(1)若P是CC1上任一點,求證:AP不可能與平面BCC1B1垂直;
(2)試在棱CC1上找一點M,使MB⊥AB1.
(1)見解析(2)M為CC1的中點
(1)證明:反證法.假設AP⊥平面BCC1B1,
因為BC平面BCC1B1,所以AP⊥BC.
又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP平面ACC1A1,CC1平面ACC1A1,所以BC⊥平面ACC1A1.
而AC平面ACC1A1,所以BC⊥AC,這與△ABC是正三角形矛盾.
故AP不可能與平面BCC1B1垂直.
(2)M為CC1的中點.
證明:∵在正三棱柱ABCA1B1C1中,BC=BB1,∴四邊形BCC1B1是正方形.
∵M為CC1的中點,D是BC的中點,∴△B1BD≌△BCM,∴∠BB1D=∠CBM,∠BDB1=∠CMB.
∵∠BB1D+∠BDB1,∠CBM+∠BDB1,∴BM⊥B1D.
∵△ABC是正三角形,D是BC的中點,∴AD⊥BC.
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC,AD平面ABC,
∴AD⊥平面BB1C1C.
∵BM平面BB1C1C,∴AD⊥BM.
∵AD∩B1D=D,∴BM⊥平面AB1D.
∵AB1平面AB1D,∴MB⊥AB1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖一,平面四邊形關(guān)于直線對稱,.把沿折起(如圖二),使二面角的余弦值等于.對于圖二,完成以下各小題:

(1)求兩點間的距離;
(2)證明:平面;
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點.

(1)若CD=2,平面ABCD⊥平面DCEF,求MN的長;
(2)用反證法證明:直線ME與BN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC=.等邊三角形ADB以AB為軸轉(zhuǎn)動.

(1)當平面ADB⊥平面ABC時,求CD.
(2)當△ADB轉(zhuǎn)動時,是否總有AB⊥CD?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知α、β、γ是三個不同的平面,命題“α∥β,且α⊥γβ⊥γ”是真命題,如果把α、β、γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題的個數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知矩形ABCD,AB=1,BC=,將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中,下列說法正確的是________.(填序號)
①存在某個位置,使得直線AC與直線BD垂直;
②存在某個位置,使得直線AB與直線CD垂直;
③存在某個位置,使得直線AD與直線BC垂直;
④對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P為△ABC所在平面外一點,O為P在平面ABC內(nèi)的射影.
(1)若P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,則O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,則O是△ABC的________心;
(3)若PA,PB,PC與底面所成的角相等,則O是△ABC的________心.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

α、β、γ是三個平面,a、b是兩條直線,有下列三個條件:①a∥γ,bβ;②a∥γ,b∥β;③b∥β,aγ.如果命題“α∩β=a,bγ,且________,則a∥b”為真命題,則可以在橫線處填入的條件是________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從正方體ABCD-A1B1C1D1的8個頂點中任意取4個不同的頂點,這4個頂點可能是:
(1)矩形的4個頂點;
(2)每個面都是等邊三角形的四面體的4個頂點;
(3)每個面都是直角三角形的四面體的4個頂點;
(4)有三個面是等腰直角三角形,有一個面是等邊三角形的四面體的4個頂點.
其中正確的結(jié)論有________個.

查看答案和解析>>

同步練習冊答案