【題目】已知正三棱柱中,,點(diǎn)為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)當(dāng)時(shí),求證;
(Ⅱ)是否存在點(diǎn),使二面角等于60°?若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)存在點(diǎn),當(dāng)時(shí),二面角等于.
【解析】
試題分析:(Ⅰ)證明:連接,由為正三棱柱為正三角形,
又平面平面平面 .易得 丄平面 .(Ⅱ)假設(shè)存在點(diǎn)滿足條件,設(shè).由丄平面,建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量為
,平面的一個(gè)法向量為 .
試題解析:(Ⅰ)證明:連接,
因?yàn)?/span>為正三棱柱,所以為正三角形,
又因?yàn)?/span>為的中點(diǎn),所以,
又平面平面,平面平面,
所以平面,所以.
因?yàn)?/span>,所以,
所以在中,,
在中,,所以,即.
又,
所以丄平面,面,所以.
(Ⅱ)假設(shè)存在點(diǎn)滿足條件,設(shè).
取的中點(diǎn),連接,則丄平面,
所以,
分別以所在直線為軸建立空間直角坐標(biāo)系,
則,
所以,
設(shè)平面的一個(gè)法向量為,
則,令,得,
同理,平面的一個(gè)法向量為,
則,取,
∴.
∴,解得,
故存在點(diǎn),當(dāng)時(shí),二面角等于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在 人或 人以下,每人需交費(fèi)用為 元;若旅行團(tuán)人數(shù)多于 人,則給予優(yōu)惠:每多 人,人均費(fèi)用減少 元,直到達(dá)到規(guī)定人數(shù) 人為止.旅行社需支付各種費(fèi)用共計(jì) 元.
Ⅰ 寫(xiě)出每人需交費(fèi)用 關(guān)于人數(shù) 的函數(shù);
Ⅱ 旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)f(x)為增函數(shù),且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)當(dāng)x∈[-1,2]時(shí),若不等式g(x)>0恒成立,求m的取值范圍;
(2)如果函數(shù)F(x)=f(x)g(x)為偶函數(shù),求m的值;
(3)當(dāng)函數(shù)f(x)和g(x)滿足f(g(x))=g(f(x))時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加師大附中第30界田徑運(yùn)動(dòng)會(huì)的開(kāi)幕式,高三年級(jí)某6個(gè)班聯(lián)合到集市購(gòu)買(mǎi)了6根竹竿,作為班旗的旗桿之用,它們的長(zhǎng)度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(Ⅰ)若從中隨機(jī)抽取兩根竹竿,求長(zhǎng)度之差不超過(guò)0.5米的概率;
(Ⅱ)若長(zhǎng)度不小于4米的竹竿價(jià)格為每根10元,長(zhǎng)度小于4米的竹竿價(jià)格為每根元.從這6根竹竿中隨機(jī)抽取兩根,若期望這兩根竹竿的價(jià)格之和為18元,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的四棱錐中,四邊形為正方形,,平面,且、、分別為、、的中點(diǎn),.
⑴證明:平面;
⑵若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且此函數(shù)圖象過(guò)點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在(0,2)上的單調(diào)性?并用定義證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com