15.已知向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow$=(-4,2,m),且$\overrightarrow{a}$∥$\overrightarrow$,則m的值為-4.

分析 利用向量平行的性質(zhì)直接求解.

解答 解:∵向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow$=(-4,2,m),且$\overrightarrow{a}$∥$\overrightarrow$,
∴$\frac{-4}{2}=\frac{2}{-1}=\frac{m}{2}$,
解得m=-4.
故答案為:-4.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量平行的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知某路段最高限速60km/h,電子監(jiān)控測(cè)得連續(xù)6輛汽車(chē)的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車(chē)超速的概率為( 。
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=log3x.
(1)求f(45)-f(5)的值;
(2)若函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時(shí),g(x)=f(x),求函數(shù) y=g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3+ax2+bx+c的圖象如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為-4.
(1)求a,b,c的值;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=log2(4x-x2)的單調(diào)遞減區(qū)間是( 。
A.(-∞,0)∪(4,+∞)B.(0,4)C.(-∞,2)∪(4,+∞)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.?x∈R,x2-x+$\frac{1}{4}$≥0的否定是?x0∈R,x${\;}_{0}^{2}$-x0+$\frac{1}{4}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若cos(α+45°)=$\frac{1}{3}$,α是第三象限角,則sin(α+45°)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.集合A={x|-5<x<1},B={x|-2<x<8},C={x|x<a},全集為實(shí)數(shù)集R
(1)求A∪B,(∁RA)∩B;
(2)若A∩B⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知頂點(diǎn)在單位圓上的△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若b2+c2=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案