16.若冪函數(shù)f(x)=xa的圖象過點(diǎn)(2,$\sqrt{2}$),則a=$\frac{1}{2}$.

分析 由已知得2a=$\sqrt{2}$,由此能求出a=$\frac{1}{2}$.

解答 解:∵冪函數(shù)y=xa的圖象過點(diǎn)(2,$\sqrt{2}$),
∴2a=$\sqrt{2}$,解得a=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意冪函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤3\\ x+3y≥-k\\ y≤1\end{array}\right.$(k∈Z),且z=2x+y的最大值為6,則k的值為(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果θ是第三象限的角,那么( 。
A.sinθ>0B.cosθ>0C.tanθ>0D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)全集U=R,集合A={x|x<0},B={x||x|>1},則A∩(∁UB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=a|sinx|+2(a>0)的單調(diào)遞增區(qū)間是( 。
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.(-π,-$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},記集合A中元素的個(gè)數(shù)為n(A),定義m(A,B)=$\left\{\begin{array}{l}n(A)-n(B),n(A)≥n(B)\\ n(B)-n(A),n(A)<n(B)\end{array}$,若m(A,B)=1,則正實(shí)數(shù)a的值是$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.“若x≠1,則x2-1≠0”的逆否命題為假命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=x2-2x+3,則g(x)=f(2-x2)的單調(diào)增區(qū)間是(  )
A.[-1,0]及[1,+∞)B.[-$\sqrt{3}$,0]及[$\sqrt{3}$,+∞)C.(-∞,-1]及[0,1]D.(-∞,-$\sqrt{3}$]及[0,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\frac{1}{2}$x2-9lnx在[a-1,a+1]上存在極值點(diǎn),則a的取值范圍是(2,4).

查看答案和解析>>

同步練習(xí)冊答案