【題目】某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:)滿足函數(shù)關(guān)系 km為常數(shù)).若該食品在0的保鮮時(shí)間是64小時(shí),在18的保鮮時(shí)間是16小時(shí),則該食品在36的保鮮時(shí)間是(

A.4小時(shí)B.8小時(shí)C.16小時(shí)D.32小時(shí)

【答案】A

【解析】

由該食品在0℃的保鮮時(shí)間是64小時(shí),在18℃的保鮮時(shí)間是16小時(shí),列出方程組,求出e9k,由此能出該食品在36的保鮮時(shí)間.

解:某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:℃)滿足函數(shù)關(guān)系k,m為常數(shù))

該食品在0℃的保鮮時(shí)間是64小時(shí),在18℃的保鮮時(shí)間是16小時(shí),

,解得e9k,

∴該食品在36℃的保鮮時(shí)間:ye36k+m=(e9k4×=(4×644(小時(shí)).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-,平面ABC,D,E,FG分別為,AC,的中點(diǎn),AB=BC=,AC==2.

求證AC平面BEF

求二面角B-CD-C1的余弦值;

證明直線FG與平面BCD相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的最小值是,且c1,求F(2)F(2)的值;

(2)a1c0,且在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足:對(duì)于任意均為數(shù)列中的項(xiàng),則稱數(shù)列為“ 數(shù)列”.

(1)若數(shù)列的前項(xiàng)和,求證:數(shù)列為“ 數(shù)列”;

(2)若公差為的等差數(shù)列為“ 數(shù)列”,求的取值范圍;

(3)若數(shù)列為“ 數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 分別為雙曲線 的左、右焦點(diǎn),過(guò)的直線與雙曲線的左右兩支分別交于 兩點(diǎn),若,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓與圓有公共點(diǎn),則實(shí)數(shù)的取值范圍是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績(jī)情況如圖所示:

(Ⅰ)請(qǐng)?zhí)顚?xiě)下表(寫(xiě)出計(jì)算過(guò)程):

(Ⅱ)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行分析;

①?gòu)钠骄鶖?shù)和方差相結(jié)合看(分析誰(shuí)的成績(jī)更穩(wěn)定);

②從平均數(shù)和命中9環(huán)及9環(huán)以上的次數(shù)相結(jié)合看(分析誰(shuí)的成績(jī)好些);

③從折線圖上兩人射擊命中環(huán)數(shù)的走勢(shì)看(分析誰(shuí)更有潛力)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意的. 當(dāng)時(shí),,.

(1)求并證明的奇偶性;

(2)判斷的單調(diào)性并證明;

(3);若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中, , 交于點(diǎn),現(xiàn)將沿折起得到三棱錐, 分別是, 的中點(diǎn).

(1)求證: ;

(2)若三棱錐的最大體積為,當(dāng)三棱錐的體積為,且為銳角時(shí),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案