分別求出m的取值范圍.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2008年廣東地區(qū)數(shù)學科全國各地模擬試題直線與圓錐曲線大題集 題型:044
已知函數(shù)和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.
(Ⅰ)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達式;
(Ⅱ)是否存在t,使得M、N與A(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù)n,在區(qū)間內(nèi)總存在m+1個實數(shù)a1,a2, am,am+1,使得不等式g(a1)+g(a2)+ 。玤(am)<g(am+1)成立,求m的最大值.(提示::函數(shù)的導數(shù)為)
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三第七次階段復習達標檢測理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)若時,函數(shù)在其定義域上是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)的最小值;
(Ⅲ)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
一次考試共有12道選擇題,每道選擇題都有4個選項,其中有且只有一個是正確的.評分標準規(guī)定:“每題只選一個選項,答對得5分,不答或答錯得零分”.某考生已確定有8道題的答案是正確的,其余題中:有兩道題都可判斷兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只好亂猜.試求出該考生:
(Ⅰ)得60分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分數(shù)的數(shù)學期望(用小數(shù)表示,精確到0.k^s*5#u01).
(文科)投擲一個質(zhì)地均勻,每個面上標有一個數(shù)字的正方體玩具,它的六個面中,有兩個面的數(shù)字是0,兩個面的數(shù)字是2,兩個面的數(shù)字是4.將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點P的橫坐標和縱坐標.
(Ⅰ)求點P落在區(qū)域上的概率;
(Ⅱ)若以落在區(qū)域上的所有點為頂點作面積最大的多邊形區(qū)域,在區(qū)域上隨機撒一粒豆子,求豆子落在區(qū)域M上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
橢圓C:(a>b>0)的左、右焦點分別是F1、F2,離心率為 ,過F1且垂直于x軸的直線被橢圓C截得的線段長為l.
。á瘢┣髾E圓C的方程;
。á颍cP是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設(shè)∠F1PF2的角平分線
PM交C的長軸于點M(m,0),求m的取值范圍;
。á螅┰冢á颍┑臈l件下,過點p作斜率為k的直線l,使得l與橢圓C有且只有一個公共點, 設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com