1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
2012×2013
=
2012
2013
2012
2013
分析:利用“裂項(xiàng)求和”
1
n(n+1)
=
1
n
-
1
n+1
,即可得出.
解答:解:∵
1
n(n+1)
=
1
n
-
1
n+1
,
∴原式=(1-
1
2
)+(
1
2
-
1
3
)+
…+(
1
2012
-
1
2013
)
=1-
1
2013
=
2012
2013

故答案為
2012
2013
點(diǎn)評(píng):熟練掌握“裂項(xiàng)求和”法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

Sn=
1
1•2
+
1
2•3
+
1
3•4
…+
1
n•(n+1)
(n∈N*)
,則S10等于( 。
A、
8
9
B、
9
10
C、
10
11
D、
11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx+(1-m)x-1+2m-1-mx(m>0)
(1)當(dāng)x≥1時(shí),若f(x)≤0恒成立,求實(shí)數(shù)m的取值范圍;
(2)證明:
1
1.2
+
1
2.3
+
1
3.4
+…+
1
(n-1)n
≥lnn(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的算法的程序框圖.
(1)標(biāo)號(hào)①處填
 
,標(biāo)號(hào)②處填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與下列偽代碼對(duì)應(yīng)的數(shù)學(xué)表達(dá)式是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{
1
n(n+1)
}的前n項(xiàng)和Sn=
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n(n+1)
,研究一下,能否找到求Sn的一個(gè)公式.你能對(duì)這個(gè)問(wèn)題作一些推廣嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案