設P是△ABC所在平面內(nèi)的一點,
BC
+
BA
=2
BP
,則( 。
分析:根據(jù)所給的關于向量的等式,把等式右邊二倍的向量拆開,一個移項一個和左邊移來的向量進行向量的加減運算,變形整理,得到與選項中一致的形式,得到結(jié)果.
解答:解:∵
BC
+
BA
=2
BP
,
.
BC
-
BP
=
BP
-
BA

PC
=
AP
,
PC
-
AP
=
0
,
PC
+
PA
=
0

故選A.
點評:本題考查了向量的加法運算和平行四邊形法則,可以借助圖形解答.向量是數(shù)形結(jié)合的典型例子,向量的加減運算是用向量解決問題的基礎,要學好向量的加減運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設P是△ABC所在平面內(nèi)的一點,
BC
+
BA
=2
BP
,則( 。
A、
PA
+
PB
=
0
B、
PC
+
PA
=
0
C、
PB
+
PC
=
0
D、
PA
+
PB
+
PC
=
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是△ABC所在平面內(nèi)的一點,
BC
+
BA
=2
BP
,則
PC
+
PA
=
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是△ABC所在平面內(nèi)的一點,且
BC
+
BA
=3
BP
,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是△ABC所在平面內(nèi)的一點,
BC
+
BA
=2
BP
,則(  )
A、
PA
+
PB
=
0
B、
PC
+
PB
=
0
C、
PC
+
PA
=
0
D、
PC
+
PA
+
PB
=
0

查看答案和解析>>

同步練習冊答案