分析 (1)根據(jù)所給的數(shù)據(jù)寫出四棱錐的側(cè)棱的長度,做出四棱錐的高,即可寫出四棱錐的體積;
(2)主視圖為等腰三角形,腰長為斜高,底邊長=AB=6,求出底邊上的高為四棱錐的高,即可求圖2的主視圖的面積.
解答 解:(1)設(shè)所截等腰三角形的底邊邊長為x cm.
在Rt△EOF中,EF=5cm,OF=$\frac{1}{2}$x cm,所以EO=$\sqrt{25-\frac{1}{4}{x}^{2}}$.
于是V=$\frac{1}{3}$x2$\sqrt{25-\frac{1}{4}{x}^{2}}$(cm3).
依題意函數(shù)的定義域為{x|0<x<10}.
(2)主視圖為等腰三角形,腰長為斜高,底邊長=AB=6,
底邊上的高為四棱錐的高=EO=$\sqrt{25-\frac{1}{4}{x}^{2}}$=4,
S=$\frac{4×6}{2}$=12(cm2)
點評 本題考查函數(shù)的模型的選擇與應用,本題解題的關(guān)鍵是根據(jù)所給的數(shù)據(jù),表示出四棱錐的表面積和體積,注意自變量的取值范圍.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅ | B. | {$\frac{1}{3}$} | C. | {$\frac{1}{3}$,$\frac{1}{4}$} | D. | {$\frac{1}{3}$,$\frac{1}{4}$,0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 這種抽樣方法是一種分層抽樣 | |
B. | 這種抽樣方法是一種系統(tǒng)抽樣 | |
C. | 這五名男生成績的方差大于這五名女生成績的方差 | |
D. | 該班級男生成績的平均數(shù)小于該班女生成績的平均數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com