A. | 5 | B. | 6 | C. | 8 | D. | 10 |
分析 根據(jù)題意,建立平面直角坐標(biāo)系,得出三角形斜邊AB上的高h(yuǎn),即得h≤$\overrightarrow{CM}$≤AB,再計算|$\overrightarrow{CM}$|=|λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$|,從而求出|λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$|的最大值.
解答 解:建立平面直角坐標(biāo)系,如圖所示;
∵BC=6,CA=8,AB=10,62+82=102,
∴∠C=90°;
∴斜邊AB上的高h(yuǎn)=$\frac{6×8}{10}$=$\frac{12}{5}$;
∵$\overrightarrow{CM}$=λ$\overrightarrow{CA}$+μ$\overrightarrow{CB}$=λ(0,8)+μ(6,0)=(6μ,8λ),
∴|$\overrightarrow{CM}$|=$\sqrt{{36μ}^{2}+6{4λ}^{2}}$∈[$\frac{12}{5}$,8];
∵λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$=λ(0,8)-μ(6,0)=(-6μ,8λ),
∴|λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$|=$\sqrt{3{6μ}^{2}+6{4λ}^{2}}$∈[$\frac{12}{5}$,8];
∴|λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$|的最大值是8.
故選:C.
點評 本題考查了向量坐標(biāo)運算、數(shù)量積運算性質(zhì)、模的計算公式,考查了推理能力與計算能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{π}-\frac{1}{4}$ | D. | $\frac{4}{π}-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com