拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,則過(guò)點(diǎn)F和M(4,4)且與準(zhǔn)線l相切的圓的個(gè)數(shù)是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    4
C
分析:圓心在FM的中垂線,經(jīng)過(guò)點(diǎn)F,M且與l相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)F的距離相等,圓心在拋物線上,直線與拋物線交于兩點(diǎn),得到有兩個(gè)圓.
解答:連接FM,作出它的中垂線,則要求的圓心就在中垂線上,
經(jīng)過(guò)點(diǎn)F,M且與l相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)F的距離相等,
∴圓心在拋物線上,
∵直線與拋物線交于兩點(diǎn),
∴這兩點(diǎn)可以作為圓心,這樣的圓有兩個(gè),
故選C.
點(diǎn)評(píng):本題考查拋物線的簡(jiǎn)單性質(zhì),本題解題的關(guān)鍵是看出圓心的特點(diǎn),看出圓心必須在拋物線上,而直線與拋物線有兩個(gè)交點(diǎn),即有兩個(gè)點(diǎn)可以作為圓心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,直線m為拋物線在第一象限內(nèi)一點(diǎn)P處的切線,過(guò)P作平行于x軸的直線n,過(guò)焦點(diǎn)F平行于m的直線交n于點(diǎn)M,若|PM|=4,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x的焦點(diǎn)為F,點(diǎn)A,B在拋物線上,且∠AFB=
3
,弦AB中點(diǎn)M在準(zhǔn)線l上的射影為M′,則
|MM′|
|AB|
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,且拋物線與2x+y-4=0交于A、B兩點(diǎn),則|FA|+|FB|=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F.
(1)若直線l過(guò)點(diǎn)M(4,0),且F到直線l的距離為2,求直線l的方程;
(2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與X軸垂直,若線段AB中點(diǎn)的橫坐標(biāo)為2.求證:線段AB的垂直平分線恰過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且點(diǎn)A在第一象限.
(Ⅰ)若
AF
=2
FB
,求直線AB的斜率;
(Ⅱ)求三角形OAB面積的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案