【題目】1)已知圓臺的上下底面半徑分別是25,且側面面積等于兩底面面積之和,求該圓臺的母線長.

2)有一個正四棱臺形狀的油槽,可以裝油190L,假如它的兩底面長分別等于60cm40cm,求它的深度為多少cm

【答案】1 275cm

【解析】

1)分別表示出圓臺兩底面積的和與側面積,列出方程即可得解;

2)由棱臺體積VSSh,代入數(shù)值即可得解.

1)設圓臺的母線長為l,

則圓臺的上底面面積為Sπ224π,圓臺的下底面面積為Sπ5225π,

所以圓臺的底面面積為SS+S29π

又圓臺的側面積Sπ2+5l7πl(wèi),

于是7πl(wèi)29π,即l;

2)由于VSSh,

h75cm

故它的深度為75cm

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

某市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動,應從第3,4,5組各抽取多少名志愿者?

(2)在(1)的條件下,該縣決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點,分別為棱的中點,點為上底面的中心,過,,三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連結的任一點,設與平面所成角為,則的最大值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求函數(shù)的單調區(qū)間;

(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為矩形,平面,,.

(Ⅰ)求證:平面;

(Ⅱ)點在線段上,且,過、三點的平面將多面體分成兩部分,設上、下兩部分的體積分別為、,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經過兩點,,且圓心在直線上.

(1)求圓的方程;

(2)設圓軸相交于兩點,點為圓上不同于、的任意一點,直線、軸于、點.當點變化時,以為直徑的圓是否經過圓內一定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有正整數(shù)構成的數(shù)表如下:

第一行:1

第二行:12

第三行:1123

第四行:11211234

第五行:1121123112112345

第k行:先抄寫第1行,接著按原序抄寫第2行,然后按原序抄寫第3行,…,直至按原序抄寫第k﹣1行,最后添上數(shù)k.(如第四行,先抄寫第一行的數(shù)1,接著按原序抄寫第二行的數(shù)1,2,接著按原序抄寫第三行的數(shù)1,1,2,3,最后添上數(shù)4).將按照上述方式寫下的第n個數(shù)記作(如,…),用表示數(shù)表第行的數(shù)的個數(shù),求數(shù)列{}的前項和=____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司采用招考方式引進人才,規(guī)定必須在、三個測試點中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每個測試點測試結果互不影響,若考生小李和小王一起前來參加招考,小李在測試點、測試合格的概率分別為、、,小王在上述三個測試點測試合格的概率都是.

1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可能性最大?請說明理由;

2)假設小李選擇測試點、進行測試,小王選擇測試點進行測試,記為兩人在各測試點測試合格的測試點個數(shù)之和,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案