【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點對稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )

A. B. C. D. 無法確定

【答案】C

【解析】由f(x)是偶函數(shù),得f(﹣x)=f(x),即sin(﹣ωx+)=sin(ωx+),

所以﹣cosφsinωx=cosφsinωx,

對任意x都成立,且ω0,所以得cosφ=0.

依題設(shè)0<φ<π,所以解得φ=

由f(x)的圖象關(guān)于點M對稱,得f(﹣x)=﹣f(+x),

取x=0,得f()=sin(+)=cos,

∴f()=sin(+)=cos,∴cos=0,

又ω0,得=+kπ,k=1,2,3,

∴ω=(2k+1),k=0,1,2,

當(dāng)k=0時,ω=,f(x)=sin(x+)在[0,]上是減函數(shù),滿足題意;

當(dāng)k=1時,ω=2,f(x)=sin(2x+)在[0,]上是減函數(shù);

當(dāng)k=2時,ω=,f(x)=(x+)在[0,]上不是單調(diào)函數(shù);

所以,綜合得ω=或2.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中,. ,.

1)求異面直線所成角的大;

2)若平面內(nèi)有一經(jīng)過點的曲線,該曲線上的任一動點都滿足所成角的大小恰等于所成角.試判斷曲線的形狀并說明理由;

3)在平面內(nèi),設(shè)點是(2)題中的曲線在直角梯形內(nèi)部(包括邊界)的一段曲線上的動點,其中為曲線的交點.為圓心,為半徑的圓分別與梯形的邊交于、兩點.當(dāng)點在曲線段上運(yùn)動時,試求圓半徑的范圍及的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進(jìn)行評估,綜合得分情況如莖葉圖所示.

(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;

(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點()為圓心的圓與軸交

于點O, A,與y軸交于點O, B,其中O為原點.

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點M, N,若OM = ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:,點.

(1)設(shè)是橢圓上任意的一點,是點關(guān)于坐標(biāo)原點的對稱點,記,求的取值范圍;

(2)已知點,,是橢圓上在第一象限內(nèi)的點,記為經(jīng)過原點與點的直線,截直線所得的線段長,試將表示成直線的斜率的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中,,沿將梯形折起,使得平面⊥平面.

(1)證明:

(2)求三棱錐的體積;

(3)求直線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示,中的最大值.已知函數(shù),

(1)設(shè),求函數(shù)上零點的個數(shù)

(2)試探討是否存在實數(shù),使得恒成立?若存在的取值范圍;若不存在說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCDPDDC,EPC的中點,作EFPBPB于點F.

1)求證:PA平面EDB;

2)求證:PB平面EFD;

3)求二面角CPBD的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。

查看答案和解析>>

同步練習(xí)冊答案